Table 4: Same legend as for Table 3 but for the physical resolution ${\cal R}_R$ in the radial direction ($\ell =h$ for all examples). $N_{\rm left}$, $N_{\rm local}$ and $N_{\rm right}$ denote the number of cylinders populating the left-side, long-range, the local and right-side, long-range contributions respectively (see the Appendix C).
Radius This method methods
$a \rightarrow a_{\rm in}$ $\frac{a_{\rm in}}{L(N_{\rm left}-1)}\ln \frac{nha_{\rm in}}{(R-nh)(R-a_{\rm in})}$ $\frac{1}{N_{\rm left}-1}$
(inner edge)    
$a \rightarrow R$ $\frac{h}{2qL} \sqrt{\frac{n^2}{1+n^2}} \left(\frac{1}{N_{\rm local}-1}\right)^{\frac{1}{2q}}$ $\frac{1}{N_{\rm local}-1}$
(field point)    
$(N_{\rm local},q)$    
$(8,\frac{1}{2})$ $0.1 \frac{h}{L}$ 0.14
$(32,\frac{1}{2})$ $0.02 \frac{h}{L} $ 0.03
$(128,\frac{1}{2})$ $5 \times 10^{-3} \frac{h}{L} $ $8 \times 10^{-3}$
$(128,\frac{1}{4})$ $9 \times 10^{-5} \frac{h}{L}$ $8 \times 10^{-3}$
$a = R \pm \ell$ $\frac{hn(1+n^2)}{qL(N_{\rm local}-1)}$ $\frac{1}{N_{\rm local}-1}$
$a \rightarrow a_{\rm out}$ $\frac{a_{\rm out}}{L(N_{\rm right}-1)}\ln \frac{a_{\rm out}-R}{nh}$ $\frac{1}{N_{\rm right}-1}$
(outer edge)    

Source LaTeX | All tables | In the text