Table 6: Output of the LVG model for the CS lines.
( $\Delta\alpha$, $\Delta\delta$) $\tau_{\rm CS}$ N(CS) $n_{\rm H_2}$
( ${\hbox{$^{\prime\prime}$ }}$, ${\hbox{$^{\prime\prime}$ }}$)   (cm-2) (cm-3)
       
(0, 40) 2.0 $3.1\times 10^{14}$ $ 1.6 \times10^5$
(-40, 20) 3.6 $6.3\times 10^{14}$ $ 1.6 \times10^5$
(-20, 20) 2.4 $1.2\times 10^{15}$ $4.0 \times 10^5$
(0, 20) 2.4 $ 1.3 \times 10^{15}$ $5.0 \times 10^5$
(20, 20) 2.8 $6.3\times 10^{14}$ $2.0 \times10^5$
(40, 0) 1.5 $1.6 \times10^{14}$ $1.0 \times 10^5$
(20, 0) 2.2 $6.3\times 10^{14}$ $2.5 \times10^5$
(0, 0) 3.0 $ 2.5 \times 10^{15}$ $6.3 \times 10^5$
(-20, 0) 3.0 $ 2.5 \times 10^{15}$ $1.0 \times 10^6$
(-40, 0) 2.9 $6.3\times 10^{14}$ $2.5 \times10^5$
(-60, 0) 4.2 $6.3\times 10^{14}$ $ 1.6 \times10^5$
(0, -20) 2.8 $6.3\times 10^{14}$ $2.0 \times10^5$
(-20, -20) 3.1 $ 1.3 \times 10^{15}$ $4.0 \times 10^5$
X(CS)a $5.6 \times10^{-9}$  
$M_{\rm CS}$a 214 $M_{\odot}$  

Note: a Computed over a spherical area with a diameter of 0.25 pc.


Source LaTeX | All tables | In the text