Table 2: Results from Gaussian Model fitting and component parameters. $S_{\rm peak}$ is the peak flux density, r and $\phi $ are the distance and the PA measured from the core and $\theta $ is the FWHM of the Gaussian component.
Epoch $\nu $ $S_{\rm peak}$ r $\phi $ $\theta $ Id.a
  [GHz] $\left[\rm\frac{mJy}{beam}\right]$ [mas] [$^\circ$] [mas]  
1992.73 5.0 596 $\pm$ 89.4 - - 0.10 $\pm$ 0.02 Core
    37 $\pm$ 5.5 0.83 $\pm$ 0.12 17 $\pm$ 8 0.14 $\pm$ 0.03 C5
    19 $\pm$ 2.8 1.92 $\pm$ 0.13 8 $\pm$ 3 0.60 $\pm$ 0.12 C3
    8 $\pm$ 1.2 5.02 $\pm$ 0.24 17 $\pm$ 2 0.93 $\pm$ 0.19 C1
    7 $\pm$ 1.0 11.46 $\pm$ 0.49 13 $\pm$ 2 3.35 $\pm$ 0.67 X
1992.85 22.2 708 $\pm$ 106.2 - - 0.18 $\pm$ 0.04 Core
    12 $\pm$ 1.8 1.37 $\pm$ 0.06 12 $\pm$ 2 0.10 $\pm$ 0.02 C4
    16 $\pm$ 2.4 2.86 $\pm$ 0.22 0 $\pm$ 4 1.48 $\pm$ 0.30 C2
1993.71 22.2 272 $\pm$ 40.8 - - 0.05 $\pm$ 0.01 Core
    79 $\pm$ 11.8 0.19 $\pm$ 0.02 15 $\pm$ 5 0.05 $\pm$ 0.01 C7
    14 $\pm$ 2.1 0.58 $\pm$ 0.07 14 $\pm$ 6 0.12 $\pm$ 0.02 C6
    14 $\pm$ 2.1 1.22 $\pm$ 0.09 20 $\pm$ 4 0.23 $\pm$ 0.05 C5
1994.21 22.2 309 $\pm$ 46.3 - - 0.09 $\pm$ 0.02 Core
    15 $\pm$ 1.9 0.28 $\pm$ 0.09 28 $\pm$ 18 0.01 $\pm$ 0.00 C7
    13 $\pm$ 1.9 0.80 $\pm$ 0.13 15 $\pm$ 9 0.42 $\pm$ 0.08 C6
    7 $\pm$ 1.0 1.79 $\pm$ 0.16 14 $\pm$ 5 0.38 $\pm$ 0.08 C4
1994.21 8.4 266 $\pm$ 39.9 - - 0.14 $\pm$ 0.03 Core
    25 $\pm$ 3.7 0.82 $\pm$ 0.09 13 $\pm$ 6 0.42 $\pm$ 0.08 C6
    10 $\pm$ 1.5 1.99 $\pm$ 0.19 17 $\pm$ 5 0.76 $\pm$ 0.15 C4
    9 $\pm$ 1.3 3.27 $\pm$ 0.22 12 $\pm$ 3 0.84 $\pm$ 0.17 C2
    4 $\pm$ 0.6 4.70 $\pm$ 0.43 14 $\pm$ 5 1.48 $\pm$ 0.30 X
1994.67 15.3 413 $\pm$ 61.9 - - 0.07 $\pm$ 0.01 Core
    20 $\pm$ 4.0 0.55 $\pm$ 0.11 14 $\pm$ 11 0.64 $\pm$ 0.13 C7
    14 $\pm$ 2.1 2.82 $\pm$ 0.24 14 $\pm$ 5 1.68 $\pm$ 0.34 C3
1994.70 5.0 284 $\pm$ 42.6 - - 0.18 $\pm$ 0.04 Core
    26 $\pm$ 3.9 0.56 $\pm$ 0.06 7 $\pm$ 6 0.21 $\pm$ 0.04 C7
    13 $\pm$ 1.9 1.86 $\pm$ 0.17 18 $\pm$ 5 0.77 $\pm$ 0.15 C5
    12 $\pm$ 1.8 3.00 $\pm$ 0.17 15 $\pm$ 3 0.72 $\pm$ 0.14 C3
    7 $\pm$ 1.0 4.34 $\pm$ 0.32 8 $\pm$ 4 1.45 $\pm$ 0.29 C2
1995.15 22.2 724 $\pm$ 108.6 - - 0.07 $\pm$ 0.01 Core
    24 $\pm$ 3.6 0.23 $\pm$ 0.04 12 $\pm$ 9 0.07 $\pm$ 0.01 C8
    9 $\pm$ 1.3 1.17 $\pm$ 0.06 12 $\pm$ 3 0.07 $\pm$ 0.01 C6
    2 $\pm$ 0.3 2.37 $\pm$ 0.19 14 $\pm$ 4 0.15 $\pm$ 0.03 C4
    10 $\pm$ 1.5 3.43 $\pm$ 0.10 15 $\pm$ 1 0.20 $\pm$ 0.04 C3
1995.31 22.2 421 $\pm$ 63.1 - - 0.10 $\pm$ 0.02 Core
    16 $\pm$ 2.4 0.27 $\pm$ 0.06 12 $\pm$ 11 0.10 $\pm$ 0.02 C8
    7 $\pm$ 1.0 0.77 $\pm$ 0.08 14 $\pm$ 6 0.10 $\pm$ 0.02 C7
1995.47 22.2 174 $\pm$ 26.1 - - 0.04 $\pm$ 0.01 Core
    14 $\pm$ 2.1 0.31 $\pm$ 0.05 29 $\pm$ 9 0.07 $\pm$ 0.01 C8
    6 $\pm$ 0.9 0.85 $\pm$ 0.07 18 $\pm$ 4 0.06 $\pm$ 0.01 C7
    6 $\pm$ 0.9 2.07 $\pm$ 0.19 23 $\pm$ 5 0.43 $\pm$ 0.09 C5
1995.65 22.2 220 $\pm$ 33.0 - - 0.07 $\pm$ 0.01 Core
    81 $\pm$ 12.1 0.16 $\pm$ 0.02 10 $\pm$ 6 0.05 $\pm$ 0.01 C9
    29 $\pm$ 4.3 0.40 $\pm$ 0.07 13 $\pm$ 10 0.32 $\pm$ 0.06 C8
1995.65 8.4 252 $\pm$ 37.8 - - 0.11 $\pm$ 0.02 Core
    32 $\pm$ 4.8 0.43 $\pm$ 0.10 9 $\pm$ 12 0.10 $\pm$ 0.02 C8
    8 $\pm$ 1.2 1.36 $\pm$ 0.18 15 $\pm$ 7 0.53 $\pm$ 0.11 C6
    3 $\pm$ 0.4 2.64 $\pm$ 0.26 20 $\pm$ 5 0.40 $\pm$ 0.08 C4
    5 $\pm$ 0.8 3.97 $\pm$ 0.34 15 $\pm$ 5 1.19 $\pm$ 0.24 C3
1996.34 22.2 221 $\pm$ 33.1 - - 0.08 $\pm$ 0.02 Core
    35 $\pm$ 5.3 0.43 $\pm$ 0.06 9 $\pm$ 7 0.24 $\pm$ 0.05 C9
    10 $\pm$ 1.5 0.97 $\pm$ 0.09 12 $\pm$ 5 0.15 $\pm$ 0.03 C7
    6 $\pm$ 0.9 1.47 $\pm$ 0.13 5 $\pm$ 5 0.20 $\pm$ 0.04 C6
1996.53 15.3 225 $\pm$ 33.8 - - 0.08 $\pm$ 0.02 Core
    17 $\pm$ 2.6 0.33 $\pm$ 0.05 9 $\pm$ 8 0.08 $\pm$ 0.02 C9
    15 $\pm$ 2.2 0.75 $\pm$ 0.09 4 $\pm$ 6 0.23 $\pm$ 0.05 C8
    4 $\pm$ 0.6 1.33 $\pm$ 0.23 17 $\pm$ 9 0.43 $\pm$ 0.09 C7
    3 $\pm$ 0.4 4.12 $\pm$ 0.34 15 $\pm$ 4 0.71 $\pm$ 0.14 C3
    1 $\pm$ 0.1 5.14 $\pm$ 0.24 27 $\pm$ 2 0.12 $\pm$ 0.02 C2
1996.60 22.2 218 $\pm$ 32.7 - - 0.06 $\pm$ 0.01 Core
    17 $\pm$ 2.6 0.73 $\pm$ 0.09 6 $\pm$ 6 0.26 $\pm$ 0.05 C8
    3 $\pm$ 0.4 1.16 $\pm$ 0.19 15 $\pm$ 9 0.22 $\pm$ 0.04 C7
    4 $\pm$ 0.6 1.78 $\pm$ 0.08 19 $\pm$ 2 0.05 $\pm$ 0.01 C6
1996.63 5.0 183 $\pm$ 27.4 - - 0.03 $\pm$ 0.01 Core
    22 $\pm$ 3.3 1.19 $\pm$ 0.07 9 $\pm$ 3 0.24 $\pm$ 0.05 C7
    8 $\pm$ 1.2 4.09 $\pm$ 0.27 20 $\pm$ 3 1.19 $\pm$ 0.24 C3
    7 $\pm$ 1.0 9.58 $\pm$ 0.49 23 $\pm$ 2 3.39 $\pm$ 0.68 C1
    3 $\pm$ 0.4 12.06 $\pm$ 0.44 10 $\pm$ 2 1.14 $\pm$ 0.23 X
1996.82 15.3 251 $\pm$ 37.6 - - 0.01 $\pm$ 0.00 Core
    13 $\pm$ 1.9 0.40 $\pm$ 0.06 19 $\pm$ 7 0.08 $\pm$ 0.02 C9
    10 $\pm$ 1.5 1.49 $\pm$ 0.16 12 $\pm$ 6 0.51 $\pm$ 0.10 C7
1996.90 22.2 260 $\pm$ 39.0 - - 0.04 $\pm$ 0.01 Core
    24 $\pm$ 3.6 0.22 $\pm$ 0.04 22 $\pm$ 10 0.08 $\pm$ 0.02 C10
    3 $\pm$ 0.4 0.76 $\pm$ 0.12 16 $\pm$ 8 0.08 $\pm$ 0.02 C8
    7 $\pm$ 1.0 1.54 $\pm$ 0.16 7 $\pm$ 6 0.38 $\pm$ 0.08 C7
    3 $\pm$ 0.4 4.69 $\pm$ 0.29 13 $\pm$ 3 0.50 $\pm$ 0.10 C3
1997.03 8.4 194 $\pm$ 29.2 - - 0.09 $\pm$ 0.02 Core
    22 $\pm$ 3.3 0.77 $\pm$ 0.07 12 $\pm$ 5 0.23 $\pm$ 0.05 C8
1997.58 22.2 929 $\pm$ 139.4 - - 0.07 $\pm$ 0.01 Core
    6 $\pm$ 0.9 0.24 $\pm$ 0.14 43 $\pm$ 29 0.01 $\pm$ 0.00 C10
    32 $\pm$ 4.8 0.51 $\pm$ 0.07 7 $\pm$ 7 0.32 $\pm$ 0.06 C9
    7 $\pm$ 1.0 1.69 $\pm$ 0.07 11 $\pm$ 2 0.06 $\pm$ 0.01 C7
1997.93 8.4 385 $\pm$ 57.7 - - 0.10 $\pm$ 0.02 Core
    19 $\pm$ 2.8 0.72 $\pm$ 0.06 14 $\pm$ 5 0.16 $\pm$ 0.03 C9
    15 $\pm$ 2.2 1.54 $\pm$ 0.10 7 $\pm$ 3 0.30 $\pm$ 0.06 C7
    7 $\pm$ 1.0 3.18 $\pm$ 0.24 15 $\pm$ 4 0.84 $\pm$ 0.17 C5
1999.41 8.4 922 $\pm$ 138.3 - - 0.10 $\pm$ 0.02 Core
    60 $\pm$ 9.0 0.68 $\pm$ 0.07 10 $\pm$ 5 0.10 $\pm$ 0.02 C10
    17 $\pm$ 2.6 1.58 $\pm$ 0.08 13 $\pm$ 2 0.20 $\pm$ 0.04 C8
    4 $\pm$ 0.6 3.16 $\pm$ 0.19 6 $\pm$ 3 0.28 $\pm$ 0.06 C6
    4 $\pm$ 0.6 3.78 $\pm$ 0.22 15 $\pm$ 3 0.40 $\pm$ 0.08 C5
1999.55 15.3 1157 $\pm$ 173.6 - - 0.06 $\pm$ 0.01 Core
    54 $\pm$ 8.1 0.40 $\pm$ 0.03 15 $\pm$ 3 0.08 $\pm$ 0.02 C11
    26 $\pm$ 3.9 1.12 $\pm$ 0.09 12 $\pm$ 4 0.39 $\pm$ 0.08 C9
    2 $\pm$ 0.3 1.89 $\pm$ 0.26 10 $\pm$ 8 0.28 $\pm$ 0.06 C8
    10 $\pm$ 1.5 2.90 $\pm$ 0.24 9 $\pm$ 4 1.17 $\pm$ 0.23 C6
1999.89 5.0 558 $\pm$ 83.7 - - 0.18 $\pm$ 0.04 Core
    39 $\pm$ 5.9 1.29 $\pm$ 0.11 8 $\pm$ 5 0.13 $\pm$ 0.03 C9
    19 $\pm$ 2.8 2.64 $\pm$ 0.15 10 $\pm$ 3 0.83 $\pm$ 0.17 C7
    6 $\pm$ 0.9 4.43 $\pm$ 0.29 12 $\pm$ 3 1.00 $\pm$ 0.20 C4
    1 $\pm$ 0.1 6.92 $\pm$ 0.98 18 $\pm$ 8 1.93 $\pm$ 0.39 C2
    7 $\pm$ 1.0 11.86 $\pm$ 0.58 17 $\pm$ 2 4.79 $\pm$ 0.96 C1
2000.82 5.0 520 $\pm$ 78.1 - - 0.12 $\pm$ 0.02 Core
    35 $\pm$ 5.3 0.77 $\pm$ 0.12 20 $\pm$ 8 0.10 $\pm$ 0.02 C11
    25 $\pm$ 3.9 1.63 $\pm$ 0.09 12 $\pm$ 3 0.42 $\pm$ 0.08 C9
    11 $\pm$ 1.6 2.71 $\pm$ 0.18 11 $\pm$ 3 0.74 $\pm$ 0.15 C7
    9 $\pm$ 1.4 4.16 $\pm$ 0.26 11 $\pm$ 3 1.25 $\pm$ 0.25 C5
    8 $\pm$ 1.3 11.16 $\pm$ 0.51 17 $\pm$ 2 4.43 $\pm$ 0.89 C1
2001.17 15.3 549 $\pm$ 82.4 - - 0.06 $\pm$ 0.01 Core
    72 $\pm$ 10.8 0.45 $\pm$ 0.04 20 $\pm$ 4 0.18 $\pm$ 0.04 C12
    14 $\pm$ 2.1 1.81 $\pm$ 0.16 17 $\pm$ 5 0.70 $\pm$ 0.14 C9
    5 $\pm$ 0.8 3.06 $\pm$ 0.22 13 $\pm$ 4 0.49 $\pm$ 0.10 C7
    3 $\pm$ 0.4 5.08 $\pm$ 0.29 16 $\pm$ 3 0.51 $\pm$ 0.10 C4
Identification of the individual components. If a component appeared
only in a single epoch it is labelled with X.


Source LaTeX | All tables | In the text