Table 1: Description of the five element sets used in the computations of the LOV, and their respective native units and rescaling parameters.
Cartesian x y z vx vy vz
Units AU AU AU AU/d AU/d AU/d
Scaling r r r v v v
Cometary e q tp $\Omega$ $\omega$ i
Units - AU d rad rad rad
Scaling 1 q Z $2 \pi $ $2 \pi $ $\pi$
Keplerian e a M $\Omega$ $\omega$ i
Units - AU rad rad rad rad
Scaling 1 a $2 \pi $ $2 \pi $ $2 \pi $ $\pi$
Equinoctial a h k p q $\lambda$
Units AU - - - - rad
Scaling a 1 1 1 1 $2 \pi $
Attributable $\alpha$ $\delta$ $\dot \alpha$ $\dot \delta$ r $\dot r$
Units rad rad rad/d rad/d AU AU/d
Scaling $2 \pi $ $\pi$ $n_\oplus$ $n_\oplus$ 1 $n_\oplus$
NOTE: Here r and v are the heliocentric distance and velocity, respectively, d is one day. The angular rate $n_\oplus =
0.01720209895$ rad/day is approximately the mean motion of the Earth and is numerically equivalent to the Gaussian gravitational constant, $k = 0.01720209895~ ({\rm AU}^3/{\rm d}^2)^{-1/2}$. The quantity $Z=2\pi q^{3/2}n_\oplus^{-1}(1-e)^{-1/2}$ is a characteristic time for a large eccentricity orbit.

Source LaTeX | All tables | In the text