Table 3: Fit parameters describing the shape of the spectra (low-frequency spectral index, break frequency, cutoff frequency) shown in Fig. 12.
      Model A Model B/HS
Location ra $\delta _{y}$b $\alpha_{{\rm low}}$ $\nu_{\rm b}$ $\nu _{\rm c}$c $\alpha_{{\rm low}}$ $\nu_{\rm b}$ $\nu _{\rm c}$
  $^{\prime\prime}$ $^{\prime\prime}$   Hz Hz   Hz Hz
A 13.0 0.0 -0.35 $1.83\times 10^{10}$ $1.83\times
10^{16}$ $\dagger$ ... ... ...
A-B1 13.7 0.0 -0.38 $2.25\times 10^{9}$ $2.25\times 10^{15}$ -0.38 $2.15\times 10^{9}$ $2.15\times 10^{15}$
B1 14.2 0.1 -0.35 $7.13\times 10^{9}$ $7.14\times 10^{15}$ $\dagger$ ... ... ...
B2 15.2 -0.1 -0.44 $2.78\times 10^{11}$ $3.81\times
10^{16}$ $\dagger$ ... ... ...
B3 15.6 -0.1 -0.48 $2.71\times 10^{11}$ $3.34\times 10^{16}$ -0.46 $1.98\times 10^{11}$ $2.38\times 10^{16}$
B3-C1 16.3 0.0 -0.38 $3.12\times 10^{9}$ $3.13\times 10^{15}$ -0.35 $1.36\times 10^{9}$ $1.36\times 10^{15}$
C1 16.8 0.1 -0.39 $1.65\times 10^{10}$ $5.24\times 10^{15}$ -0.38 $1.59\times 10^{10}$ $3.74\times 10^{15}$
C1-C2 17.3 0.0 -0.37 $1.45\times 10^{11}$ $4.42\times 10^{14}$ -0.35 $1.35\times 10^{11}$ $3.67\times 10^{14}$
C2 17.7 0.0 -0.36 $2.86\times 10^{10}$ $9.38\times 10^{14}$ -0.35 $3.07\times 10^{10}$ $8.19\times 10^{14}$
C2-D1 18.3 0.2 -0.49 $2.39\times 10^{10}$ $7.88\times 10^{15}$ -0.35 $8.65\times 10^{9}$ $5.46\times 10^{14}$
D1 18.9 0.1 -0.48 $1.06\times 10^{10}$ $4.34\times 10^{15}$ -0.35 $9.58\times 10^{8}$ $4.65\times 10^{14}$
D1-D2 19.5 -0.2 -0.35 $4.62\times 10^{9}$ $3.16\times 10^{14}$ -0.35 $5.78\times 10^{9}$ $3.23\times 10^{14}$
D2 19.8 -0.2 -0.35 $7.92\times 10^{9}$ $5.26\times 10^{14}$ -0.35 $9.27\times 10^{9}$ $5.15\times 10^{14}$
H3 20.2 -0.3 -0.39 $2.20\times 10^{9}$ $8.75\times 10^{14}$ -0.35 $1.08\times 10^{9}$ $5.10\times 10^{14}$
H2 21.3 0.0 ... ... ... -0.60 $1.14\times 10^{10}$ $7.50\times 10^{14}$
H1 22.1 -0.2 ... ... ... -0.44 $2.28\times 10^{9}$ $5.79\times 10^{13}$
a Distance along radius vector.
b Distance from the radius vector; negative offsets are to the south.
c The $\dagger$ mark indicates locations where there is no cutoff to the optical spectrum in the observed range and the value given is a lower limit to the true cutoff frequency. Both fits are identical in this case.


Source LaTeX | All tables | In the text