Table 6: The results of using the turbulent velocity rather than the outflow velocity to calculate the minimum distance of a warm absorber from the central engine: object name, turbulent velocity ( $v_{\rm min,vturb}$; km s$^{\rm -1}$ FWHM), minimum distance of warm absorber from central engine derived from turbulent velocity ( $r_{\rm min,vturb}$; pc), the ratios of this minimum distance to the BLR and torus distances respectively ( $r_{\rm min,vturb}$/ $r_{\rm BLR}$, $r_{\rm min,vturb}$/ $r_{\rm torus}$), and the ratio $r_{\rm min,vturb}$/ $r_{\rm min}$.

Object
$v_{\rm turb}$ $r_{\rm min,vturb}$ $r_{\rm min,vturb}$/ $r_{\rm BLR}$ $r_{\rm min,vturb}$/ $r_{\rm torus}$ $r_{\rm min,vturb}$/ $r_{\rm min}$

IRAS 13349+2438
1430 3.4 30 1.0 0.086
NGC 3783 420 0.55 150 0.46 3.2
Markarian 509 170 29 440 8.1 1.4
MCG-6-30-15a 220 2.8 400 3.8 0.48
  770 0.22 32 0.30 6.2
NGC 4051 350 0.097 18 0.65 1.3
a
The two absorption phases in MCG-6-30-15 have different
turbulent velocities and different outflow velocities.


Source LaTeX | All tables | In the text