Table 8: Blend of an ab-type RR Lyrae and a clump star in field A.
$\langle V_{\rm RR}\rangle=19.326$    $\langle B_{\rm RR}\rangle =19.757$
$A_{V}\rm (RR)=0.882$    $A_{B}\rm (RR)=1.177$
$\langle V_{\rm Clump~A}\rangle=19.304$    $\langle B_{\rm Clump~A}\rangle=20.215$
Phase $V_{\rm RR}$ $B_{\rm RR}$   $V_{\rm RR+Clump}$ $B_{\rm RR+Clump}$
0.00 18.798 19.026   18.269 18.713
0.10 19.024 19.331   18.402 18.933
0.20 19.191 19.625   18.493 19.128
0.30 19.318 19.819   18.558 19.246
0.40 19.477 20.019   18.634 19.360
0.50 19.542 20.012   18.664 19.356
0.60 19.583 20.114   18.682 19.411
0.70 19.580 20.156   18.681 19.433
0.80 19.680 20.203   18.723 19.456
0.90 19.592 19.994   18.686 19.346
1.00 18.798 19.026   18.269 18.713
$\langle V_{\rm RR+Clump}\rangle =18.551$    $\langle B_{\rm RR+Clump}\rangle=19.190$
$A_{V}\rm (RR+Clump)=0.454$    $A_{B}\rm (RR+Clump)=0.743$
$\Delta V= \langle V_{\rm RR+Clump}\rangle - \langle V_{\rm RR}\rangle = 0.775$
$\Delta B= \langle B_{\rm RR+Clump}\rangle - \langle B_{\rm RR}\rangle = 0.567$


Source LaTeX | All tables | In the text