Table 1: Evolution of the number of photons, limiting magnitudes and Strehl ratio in function of the number of apertures and in function of the considered mode. Imaging and coronagraphic modes require respectively precision of $\lambda /4$ and $\lambda /100$. From left to right: 1- number of apertures; 2- minimum, imaging or coronagraphic modes; 3- number of photons needed to achieve the required precision; 4- limiting stellar magnitude for an optical bandwidth of $\Delta \lambda = 4000$ Åand for a constant aperture diameter of 8 m; 5- limiting stellar magnitude for a collecting surface of 150 m2 ( $\pi *(8/2)^2*3)$; 6- Strehl ratio.
      Limiting magnitudes  
      ( $\Delta \lambda = 4000$ Å)  
Number Mode Number     Strehl
of   of photons     (in %)
apertures   needed d= 8 m $S_{\rm coll}= 150$ m2  
    per cube      
  Minimum 64 20.4 20.4 83
3 Imaging 960 17.4 17.4 94
  Coronagraphy 32 000 13.6 13.6 100
  Minimum 64 20.7 20.7 52
4 Imaging 3200 16.4 16.1 95
  Coronagraphy 96 000 12.7 12.4 98
  Minimum 160 19.9 19.6 63
5 Imaging 6400 15.9 15.4 94
  Coronagraphy 160 000 12.4 11.7 97
  Minimum 320 19.4 18.6 63
6 imaging 16 000 15.1 14.4 90
  Coronagraphy 160 000 12.6 11.9 97
  Minimum 640 18.8 17.6 64
7 imaging 32 000 14.5 13.6 93
  Coronagraphy 224 000 12.4 11.5 97
  Minimum 960 18.5 17.4 45
8 Imaging 32 000 14.7 13.6 93
  Coronagraphy 224 000 12.6 11.5 96
  Minimum 960 18.6 17.4 47
9 Imaging 32 000 14.8 13.6 84
  Coronagraphy 224 000 12.7 11.5 98
  Minimum 1600 18.2 16.9 63
10 Imaging 32 000 14.8 13.6 81
  Coronagraphy 320 000 12.41 11.1 95


Source LaTeX | All tables | In the text