Table 1: Growth rate k, with an estimate of the related uncertainty $\Delta k$, for the radial orbit instability from the simulation of a set of $f^{(\nu )}$ models. Here $\kappa = 2K_{\rm r}/K_{\rm T}$ is the global anisotropy parameter and $\eta = a_3/a_1$ is the axis ratio of the inertia ellipsoid referred to the sphere of radius 3 rM. For $M = 10^{11}~M_{\odot}$ and $r_M = 5~\rm kpc$, k is given in units of $10^{-8}~\rm yr^{-1}$.
$(\nu;\Psi)$ k $\Delta k$ $\kappa (0) $ $\kappa(t_{\rm end})$ $\eta(t_{\rm end})$
(1; 2.0) 0.85 0.1 2.65 1.87 0.65
(1; 3.0) 0.48 0.07 2.17 1.84 0.67
(1; 3.2) 0.37 0.07 2.09 1.84 0.69
(1; 3.4) 0.34 0.07 2.02 1.83 0.74
(1; 3.6) 0.30 0.05 1.95 1.85 0.80
(1; 3.8) 0.16 0.04 1.89 1.82 0.85
(1; 4.0) 0.08 0.05 1.84 1.81 0.91
(1; 4.2) 0.007 0.10 1.78 1.76 0.94
(1; 5.0) 0.001 0.01 1.60 1.60 0.99
(1; 9.0) <10-4 - 1.32 1.32 0.99
(3/8; 3.0) 0.90 0.10 2.28 1.86 0.73
(3/8; 5.0) 0.45 0.15 1.75 1.71 0.93
(1/2; 3.0) 0.70 0.10 2.21 1.86 0.70
(1/2; 4.0) 0.43 0.05 1.92 1.80 0.85
(1/2; 5.0) 0.1 0.2 1.68 1.67 0.96
(1/2; 6.0) <10-3 - 1.54 1.54 0.99
(3/4; 3.0) 0.64 0.05 2.20 1.85 0.70
(3/4; 4.0) 0.16 0.02 1.86 1.76 0.84
(3/4; 5.0) < $2\times 10^{-2}$ - 1.63 1.63 0.98


Source LaTeX | All tables | In the text