Table 8: Influence of $\dot{J}_2$ on the polynomial development of $\psi _A$ (more particularly on the t2 and t3 terms): (1) IAU2000 (Mathews et al. 2002); (2) P03 (Capitaine et al. 2003); and (3) Same computation as in P03 but with other $\dot{J}_2$ values. The J2 secular trend estimation based on our C20 residuals series is:  $\dot{J}_2 = -2.5 \times 10^{-9}$/cy.
   $\dot{J}_2$  t2  t3

(1) IAU2000
None   $-1\hbox{$.\!\!^{\prime\prime}$ }07259$   $-0\hbox{$.\!\!^{\prime\prime}$ }001147$

(2) P03
  $-3\times10^{-9}$/cy   $-1\hbox{$.\!\!^{\prime\prime}$ }079007$   $-0\hbox{$.\!\!^{\prime\prime}$ }001140$

  $\overbrace{\hspace*{4.3cm}
}^{\mbox{Differences wrt P03}}$
      0 /cy -7.000 mas $\mu $as
    $-2 \times 10^{-9}$/cy -2.871 mas $\mu $as
(3)   $-2.3 \times 10^{-9}$/cy -1.954 mas $\mu $as
    $-2.5 \times 10^{-9}$/cy -1.495 mas $\mu $as


Source LaTeX | All tables | In the text