Contents

A&A 423, 919-924 (2004)
DOI: 10.1051/0004-6361:20035770

Triggered star formation in the inner wing of the SMC. Two possible supernova explosions in the N83-84-85 region[*]

E. Bratsolis1,2 - M. Kontizas2 - I. Bellas-Velidis3


1 - École Nationale Supérieure des Télécommunications, Département Traitement du Signal et des Images, 46 rue Barrault, 75013 Paris, France
2 - Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15783 Athens, Greece
3 - National Observatory of Athens, Institute of Astronomy and Astrophysics, Lofos Koufou - P. Penteli, 15236 Athens, Greece

Received 1 December 2003 / Accepted 3 May 2004

Abstract
In this article we study the N83-84-85 region of the inner wing of the SMC. Direct and low-dispersion objective prism plates taken with the 1.2 m UK Schmidt Telescope have been digitized by the SuperCOSMOS machine. Star counts have been performed for our region in selected luminosity slices in the U filter and isodensity contours have been used to identify the structures with enhanced stellar number density. We find evidence of triggered star formation from massive stars of older to more recent OB associations. Circular arcs constructed by O and B stars have been detected. A study of the population places stars with more recent ages in the groups of the arcs than of their centers. These effects can be explained by supernova explosions. A catalogue of the non-saturated detected OB stars in this region is given.

Key words: techniques: image processing - methods: data analysis - stars: formation - galaxies: Magellanic Clouds - shock waves

1 Introduction

The formation of massive stars is a topic of major interest. Massive stars are often formed in groups, such as OB associations and clusters. Massive stars finish their life by supernova explosions. The interstellar medium (ISM) is continuously stirred by supernova explosions and stellar winds of massive stars. Shock waves from supernova and stellar wind-blown bubbles around O and B type star associations generate turbulences in the ISM. Star formation may trigger further star formation in nearby gas if the density is high enough but also star-forming clouds are destroyed by the same effects and shut off star formation. There remains an open question about the density of the ISM and the violence of the effect. A supernova explosion can produce a shell wall or a dense interstellar cloudlet only if the density is high enough.

In this work we use data from digitized plates, using the direct and objective prism, of the SMC focusing on the inner wing. The same region has been studied by Testor & Lortet (1988). Our study with automated techniques of the objective prism plates (Bratsolis et al. 1998, 2000; Bratsolis 2002) gave OB populations in circular structures. A new study to investigate plates of the same region with slices of different populations and contour detection (Maragoudaki et al. 2001) showed that the outer populations of OB stars are more recent OBs of the centers. This is evidence of star-formation triggered by supernova explosions. Therefore, there is a strong correlation of our study region with the supernova remnants (SNRs) of ROSAT X-ray observations No. 223 RX J0112.7-7207 and No. 245 RX J0119.4-7301 (Kahabka et al. 1999). These regions were searched for in IRAS and ISO (for lambda 170). The image of the SMC in both cases is of low resolution.

Following the theoretical work of Vishniac (1994), Elmegreen (1994) and Ehlerová et al. (1997) for isolated supernova explosions we can extract a time scale for the supernova explosions and the density of the ISM before the explosion.


  \begin{figure}
\par\includegraphics[width=10.5cm, height=11.1cm,clip]{0770fi1.ps}\end{figure} Figure 1: Positions of OB classified stars with an automated method of correlation. The circles present the regions of SN explosions.

2 The region N83-84-85 of the SMC

The region N83-84-85 belongs to the inner wing of the SMC and is of interest because of its OB associations and nebulae. It is evident that there is a correlation between associations like NGC 456, 460a, b and 465 with the nebulae of ionized gas. This region has been studied by different authors in the past (Westerlund 1961; Azzopardi & Vigneau 1982; Kontizas et al. 1988; Testor & Lortet 1987; Lortet & Testor 1988; Dapergolas et al. 1991; Caplan et al. 1996). There are groups of stars with age variations of 4-10 Myr and spatial scales of 30-400 pc. There is also an extended region containing N83-84-85 with a diameter of more than 500 pc and sequential star formation on a scale of 107 yr which seems to be part of a supergiant shell (Westerlund 1961; Staveley-Smith et al. 1997; Stanimirovic et al. 1999).

We focus on this region because it seems to show a feedback between OB star formation and the physical properties of the ISM. It suggests that star formation and ISM properties probably are self-regulated. The ISM is continuously stirred by supernova explosions and stellar winds. The shock waves engaged by the supernova accelerate galactic cosmic rays that penetrate deeply into molecular clouds and clumps and heat and ionize them. Far ultraviolet photons are produced by massive star formation and photoinize the less dense surface regions of the molecular cloud and its internal clumps.


  \begin{figure}
\par\includegraphics[width=6.1cm,height=6.5cm,clip]{0770fi2a.ps}\...
...*{6mm}
\includegraphics[width=6.1cm, height=6.5cm,clip]{0770fi2d.ps}\end{figure} Figure 2: Upper left: isodensity contours for main sequence OB stars younger than $8 \times 10^6$ yr. Upper right: isodensity contours for main sequence B stars with ages between $8 \times 10^6$and $1.2 \times 10^7$ yr. Lower left: isodensity contours for main sequence B stars with ages between $1.2 \times 10^7$and $3 \times 10^7$ yr. Lower right: density distribution for main sequence B stars with ages older than $3 \times 10^7$ yr. The octagons present the regions of SN explosions. Subslices for these star ages do not give any significant contours.

3 Image reduction

Our test image contains a region of $36.2~ \times ~39.1 ~\mbox{arcmin}^2$ of SMC. The scanning pixel size of the SuperCOSMOS measuring machine is $10~\mu$m and the plate scale is 67.11 arcsec/mm. Our image is centered at RA $_{2000}=\rm 1^{h}16^{m}$ and Dec $_{2000}=-73^{\circ}20{'}$and contains a region from RA $_{2000}=\rm 1^{h}12^{m}$ to RA $_{2000}=\rm 1^{h}20^{m}$and from Dec $_{2000}=-73^{\circ}35{'}$ to Dec $_{2000}=-73^{\circ}05{'}$. The magnitude limit for classification of our plate is mB=18.5.

The detection (DETSP), extraction (EXTSP) and classification (RCORR) was made by automated methods (Bratsolis et al. 1998, 2000; Bratsolis 2002).

The extracted spectra are stored in a two-dimensional file $n \times 128$, where n is the number of detected spectra. Each row of this file is an independent normalized spectrum with a length of 128 pixels. The maximum correlation method has been used to automatically classify the spectra and gave 610 clearly classified OB spectra (Fig. 1).

The same region was also chosen from the direct U plate taken with the UK 1.2 m Schmidt Telescope. The plate was digitized by the SuperCOSMOS machine and the derived data given for the detected images positions and magnitudes. Isodensity contours have been used to identify the various structures with enhanced stellar density. The contour level separation has been defined by the mean value plus $3\sigma$ from the local background (Fig. 2). The detected stellar images were divided in various luminosity slices according to their magnitude. The magnitude limit for the U plate is mU=19.7, corresponding to the A0 spectral type stars.

The data were separated in four luminosity slices.

The first slice contains main sequence stars with U<15 and -1.5<U-V<-0.8, corresponding to ages less than $8 \times 10^6$ yr and stars more luminous than B2 spectral type.

The second slice contains main sequence stars with 15<U<16 and -1.4<U-V<-0.6, corresponding to ages of $8\times10^6{-}1.2\times10^7$ yr and stars of B2 spectral type.

The third slice contains main sequence stars with 16<U<17 and -1.3<U-V<-0.2, corresponding to ages of $1.2{-}3\times10^7$ yr and stars of late B2 to early B4 spectral type.

The fourth slice contains main sequence stars with U>17 and -1.1<U-V corresponding to ages grater than $3 \times 10^7$ yr.

The scale calibration of the U plate, produced for the SMC distance modulus m-M=19 and based on theoretical models, is given in Table 1.


 

 
Table 1: Scale calibration of the U plate for the SMC.
Spectral type $U_{\rm SMC}$ Age
O5 11.9 $3\times10^6$
B0 13.5 $4\times10^6$
B1 14.6 $6\times10^6$
B2 15.4 $1\times10^7$
B3 16.3 $1.5\times10^7$
B4 16.7 $2.8\times10^7$
B5 17.2 $4\times10^7$
B6 17.5 $1\times10^8$
B7 17.9 $1.6\times10^8$
B8 18.4 $2\times10^8$
B9 18.5 $3\times10^8$
A0 19.7 $4\times10^8$


Detected objects in our region (not including the OB stars) are presented by Bica & Schmitt (1995) in Table 2. The non-saturated detected OB stars are presented in Table 3.

4 The evolution of an expanding shell

Let us accept a simple model of a supernova explosion. The supernova produces a gravitational instability in the ISM and accumulates the gas in an expanding shell. The expanding shell's equations are known as Sedov's equations (Dyson & Williams 1997), given by

 \begin{displaymath}R(t)=\left(\frac{25}{3\pi}\right)^{1/5}
\left(\frac{E_{\rm {SN}}}{\rho_0}\right)^{1/5}t^{2/5}
\end{displaymath} (1)

and

 \begin{displaymath}u_{\rm s}(t)=\frac{2}{5}\frac{R(t)}{t}
\end{displaymath} (2)

where R(t) is the radius of the shell and $u_{\rm s}(t)$ the expansion velocity of the shell at the time t relative to the ambient medium with density $\rho_0$. $E_{\rm {SN}}$ is the total supernova explosion energy.


 

 
Table 2: Detected objects in our region according Bica & Schmitt (1995).
Number RA(2000) Dec(2000) Name xPos. yPos. Type Dmax Dmin Remarks
  $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$         (') (')  
887 01 12 52 -73 07 10 L91 223 391 C 1.20 1.20  
894 01 13 48 -73 17 33 NGC456 218 376 NA 3.80 2.90  
895 01 13 50 -73 18 02 SMC-N83A 218 376 NC 0.60 0.45 $\mbox{in}~NGC456$
896 01 13 52 -73 15 45 SMC-N83B 217 379 NC 0.30 0.30 $\mbox{att}~NGC456$
898 01 13 53 -73 15 56 L61-501 217 379 NC 0.25 0.25 $\mbox{att}~NGC456$
899 01 13 53 -73 24 59 HW68 218 366 C 0.55 0.55  
901 01 13 56 -73 15 53 MA1779 217 379 NC 0.25 0.25 $\mbox{att}~NGC456$
902 01 14 00 -73 15 12 L61-502 217 380 NC 0.30 0.30  
903 01 14 02 -73 17 05 SMC-N83C 216 377 NC 0.90 0.90 $\mbox{in}~NGC456$
906 01 14 06 -73 14 06 B146 216 381 A 0.75 0.75 $\mbox{att}~SMC-N84n$
907 01 14 17 -73 22 42 HW69 215 369 C 0.55 0.55  
908 01 14 18 -73 15 50 SMC-N84C 215 379 NC 0.65 0.65 $\mbox{att}~SMC-N84n$
909 01 14 22 -73 14 04 SMC-N84n 214 381 NA 4.00 3.00  
910 01 14 24 -73 14 03 L61-505 214 381 NC 0.35 0.30 $\mbox{in}~N84n$
914 01 14 37 -73 16 24 BS161 213 378 NA 1.60 1.20 $\mbox{in}~SMC-N84s$
916 01 14 38 -73 17 59 NGC460nw 213 376 NA 1.90 1.70 $\mbox{in}~SMC-N84s$
917 01 14 38 -73 18 27 SMC-N84A 213 375 NC 0.80 0.65 $\mbox{in}~NGC460nw$
918 01 14 41 -73 18 30 L61-507 213 375 NC 0.30 0.30 $\mbox{in}~NGC460nw$
923 01 14 45 -73 18 18 MA1794 212 375 NA 0.70 0.70 $\mbox{in}~NGC460nw$
924 01 14 45 -73 20 44 SMC-N84D 212 372 NC 0.30 0.30 $\mbox{in}~NGC460se$
925 01 14 45 -73 22 54 BS165 212 369 AC 0.95 0.65  
926 01 14 46 -73 18 54 SMC-N84s 212 374 NA 7.50 4.00  
927 01 14 47 -73 19 45 SMC-N84B 212 373 NC 0.35 0.35 $\mbox{in}~NGC460se$
928 01 14 47 -73 21 04 BS166 212 371 NC 0.45 0.35 $\mbox{in}~NGC460se$
929 01 14 47 -73 20 12 MA1796 212 372 NC 0.20 0.20 $\mbox{in?}~NGC460se,PN?$
931 01 14 52 -73 07 04 B147 211 391 AC 1.20 1.10  
932 01 14 54 -73 20 02 MA1799 211 373 NA 0.60 0.55 $\mbox{in}~NGC460se$
933 01 14 54 -73 19 45 NGC460se 211 373 NA 2.60 1.50 $\mbox{in}~SMC-N84s$
934 01 14 57 -73 19 36 L61-512 211 373 NA 0.50 0.35 $\mbox{in}~NGC460se$
946 01 15 32 -73 11 46 SMC-DEM155 207 384 NA 1.80 1.80 $\mbox{in}~SMC-DEM157$
947 01 15 42 -73 10 00 HW72 206 386 CN 0.55 0.45 $\mbox{in}~SMC-DEM157$
948 01 15 42 -73 19 46 NGC465 207 373 A 5.00 4.00 $\mbox{in}~SMC-DEM157$
949 01 15 49 -73 20 40 Sk157 206 372 C 0.60 0.60 $\mbox{in}~NGC465$
950 01 15 52 -73 18 56 Sk158 206 374 C 0.70 0.60 $\mbox{in}~NGC465$
952 01 16 09 -73 11 19 SMC-DEM156 203 385 NA 2.80 2.60 $\mbox{in}~SMC-DEM157$
954 01 16 21 -73 20 12 SMC-DEM157 203 372 NA 22.00 17.00  
956 01 16 48 -73 09 36 HW74 199 387 C 0.55 0.50 $\mbox{in}~SMC-DEM158$
957 01 16 49 -73 09 20 SMC-DEM158 199 387 NA 1.80 1.50 $\mbox{in}~SMC-DEM157$
958 01 16 59 -73 12 06 SMC-DEM159 198 383 NA 1.50 0.80 $\mbox{in}~SMC-DEM157$
959 01 17 30 -73 34 09 HW75 197 352 CA 0.90 0.80  
961 01 19 31 -73 05 38 B156 183 392 C 0.65 0.45  


After the linear analysis of Elmegreen (1994) and Vishniac (1994) in a uniform medium with gravitation constant G, we have that an expanding shell with surface density $\Sigma$ and velocity dispersion in the shell c has an instantaneous maximum growth rate $\omega$ given by

 \begin{displaymath}\omega = - \frac{3u_{\rm s}}{R} + \sqrt{\frac{u_{\rm s}^2}{R^2} + \left ( \frac{\pi G \Sigma}{c}
\right ) }\cdot
\end{displaymath} (3)

If $\rho$ and $\rho_0$ are the densities of the perturbed and unperturbed medium respectively, then they are connected to the dimensionless quantity ${\cal M}$by the formula (Efremov & Elmegreen 1998)

 \begin{displaymath}\frac{\rho}{\rho_0} = \left ( \frac{u_{\rm s}}{c} \right )^2 = {\cal M}^2.
\end{displaymath} (4)

At the time $t_{\rm b}$, when $\omega >0$ or

 \begin{displaymath}\xi = \frac{\sqrt{8} u_{\rm s} c}{\pi G R \Sigma} < 1
\end{displaymath} (5)

the perturbation grows.

We now use the same logic as Ehlerová et al. (1997) for isolated supernova explosions and we obtain the radius

 
                                R(t) = $\displaystyle 83.2 \left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{1/5...
...3} \right )^{-1} \left (
\frac{n_0}{{\rm cm}^{-3}} \right )^{-1} \right ]^{1/5}$  
    $\displaystyle \left ( \frac{t}{{\rm Myr}} \right )^{2/5} ~{\rm pc}$ (6)

the total mass

 \begin{displaymath}m(R) = \frac{4 \pi \rho_0 R^3(t)}{3}
\end{displaymath} (7)

and the surface density

 \begin{displaymath}\Sigma (t) = \frac{m(R)}{4 \pi R^2 (t)}\cdot
\end{displaymath} (8)

From Eqs. (8), (7) and (6) we have
 
                                 $\displaystyle \Sigma (t)$ = $\displaystyle 0.91
\left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{1/5...
...1.3} \right )^{4} \left (
\frac{n_0}{{\rm cm}^{-3}} \right )^{4} \right ]^{1/5}$  
    $\displaystyle \left ( \frac{t}{{\rm Myr}} \right )^{2/5} ~M_{\odot}/ {\rm pc}^2.$ (9)

From Eqs. (5), (2) and (9) we have

 \begin{displaymath}\xi (t) = 0.89 \frac{c}{G} \frac{1}{\left ( \rho_0^4 E_{\rm {SN}} \right )^{1/5}}
t^{-7/5}.
\end{displaymath} (10)

The instability time $t_{\rm b}$ is estimated by the condition

 \begin{displaymath}\xi (t_{\rm b}) = 1
\end{displaymath} (11)

and is
 
                                 $\displaystyle t_{\rm b}$ = $\displaystyle 21.9 \left ( \frac{c}{1~{\rm km~s^{-1}}} \right )^{5/7}
\left ( \frac{n_0}{{\rm cm}^{-3}} \right )^{-4/7}
\left ( \frac{\mu}{1.3} \right )^{-4/7}$  
    $\displaystyle \left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{-1/7}~{\rm Myr}.$ (12)

The radius R and the expansion velocity $u_{\rm s}$ of the shell at $t_{\rm b}$ are
 
                                 $\displaystyle R(t_{\rm b})$ = $\displaystyle 286 \left ( \frac{c}{1~{\rm km~s^{-1}}} \right )^{2/7}
\left ( \frac{n_0}{{\rm cm}^{-3}} \right )^{-3/7}
\left ( \frac{\mu}{1.3} \right )^{-3/7}$  
    $\displaystyle \left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{1/7}~{\rm pc}$ (13)

and
 
                                 $\displaystyle u_{\rm s} (t_{\rm b})$ = $\displaystyle \frac{2}{5} \frac{R(t_{\rm b})}{t_{\rm b}} =
5.22 \left ( \frac{c...
...\frac{n_0}{{\rm cm}^{-3}} \right )^{1/7}
\left ( \frac{\mu}{1.3} \right )^{1/7}$  
    $\displaystyle \left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{2/7}~{\rm km~s^{-1}}.$ (14)

The estimation of fragmentation time is given by

 \begin{displaymath}\int_{t_{\rm b}}^{t_{\rm f}} \omega (t) {\rm d}t = 1.
\end{displaymath} (15)

From Eqs. (3) and (5) we obtain

 \begin{displaymath}\omega = \frac{u_{\rm s}}{R} \left ( -3 + \sqrt{1 + \frac{8}{\xi^2 (t)}}~ \right )
\end{displaymath} (16)

and from Eqs. (11) and (10)

 \begin{displaymath}\xi(t) = \left ( \frac{t}{t_{\rm b}} \right )^{-7/5} \cdot
\end{displaymath} (17)

From Eqs. (15), (17), (16) and (2) we have

 \begin{displaymath}\int_{t_{\rm b}}^{t_{\rm f}} \frac{ -3 + \sqrt{1 + 8 \left(\frac{t}{t_{\rm b}}\right)^{14/5} }}{t} {\rm d}t = 1
\end{displaymath} (18)

and

 \begin{displaymath}\int_{1}^{x_{\rm f}} \frac{ -3 + \sqrt{1 + 8 x^{14/5} }}{x} {\rm d}x = \frac{5}{2}
\end{displaymath} (19)

where

 \begin{displaymath}x_{\rm f}=t_{\rm f}/t_{\rm b}.
\end{displaymath} (20)

The numerical solution of (19) gives $x_{\rm f}\approx 2.47$. From Eqs. (12) and (20) we have
 
                                $\displaystyle t_{\rm f}$ = $\displaystyle 54.1 \left ( \frac{c}{1~{\rm km~s^{-1}}} \right )^{5/7}
\left ( \frac{n_0}{{\rm cm}^{-3}} \right )^{-4/7}
\left ( \frac{\mu}{1.3} \right )^{-4/7}$  
    $\displaystyle \left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{-1/7}~{\rm Myr}.$ (21)

From Eqs. (21), (6) and (2) we obtain
 
                                $\displaystyle R(t_{\rm f})$ = $\displaystyle 410.6 \left ( \frac{c}{1~{\rm km~s^{-1}}} \right )^{2/7}
\left ( \frac{n_0}{{\rm cm}^{-3}} \right )^{-3/7}
\left ( \frac{\mu}{1.3} \right )^{-3/7}$  
    $\displaystyle \left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{1/7}~{\rm pc}$ (22)

and
 
                     $\displaystyle u_{\rm s} (t_{\rm f}) = \frac{2}{5} \frac{R(t_{\rm f})}{t_{\rm f}}$ = $\displaystyle 3.04 \left ( \frac{c}{1~{\rm km~s^{-1}}} \right )^{-3/7}
\left ( \frac{n_0}{{\rm cm}^{-3}} \right )^{1/7}$  
    $\displaystyle \left ( \frac{\mu}{1.3} \right )^{1/7}
\left ( \frac{E_{\rm {SN}}}{10^{51}~{\rm erg}} \right )^{2/7}~{\rm km~s^{-1}}.$ (23)

5 Two possible supernova explosions

As we observe (Fig. 1), the OB stars are not uniformly distributed. They present different densities and holes. Here we chose two cases presenting circular arcs and to explain these as star groups formed by a triggered effect, by the supernova explosions. These approximately circular forms suggest that pre-stellar gas was uniformly swept up by a central source of pressure. We chose two circles with different size.

The small circle has a center at RA $_{2000}=\rm 1^{h}16^{m}$ and Dec $_{2000}=-73^{\circ}20{'}$ and radius 32.4 pc. On the right part of this circle we find the end of the nebula N84 and on the left part the beginning of the N85.

The large circle has a center at RA $_{2000}=\rm 1^{h}16^{m}$ and Dec $_{2000}=-73^{\circ}11{'}$ and radius 58.9 pc. At its center we find the association DEM156 and at its circumference the association DEM155, the nebula N86 and the associations DEM158 and DEM159.

Both circles have a radius less than 100 pc, so we can consider isolated supernova explosions. We suppose now that the radii of circles now are not so different from the radius at the fragmentation time. The small circle has a radius $R_1(t_{\rm f})$and the large circle a radius $R_2(t_{\rm f})$. We also suppose that the average molecule in a cloud is $\mu=1.3$, the total energy of a supernova is $E_{\rm {SN}}=10^{51}~{\rm erg}$ and the velocity dispersion in the shell is $c=1~{\rm km~s^{-1}}$. From Eq. (22) we have

 \begin{displaymath}R(t_{\rm f}) = 410.6 \left ( \frac{n_0}{{\rm cm}^{-3}} \right )^{-3/7}~{\rm pc}
\end{displaymath} (24)

which gives

 \begin{displaymath}n_0 = \left ( \frac{R(t_{\rm f})}{410.6~{\rm pc}} \right )^{-7/3}~{\rm cm}^{-3}.
\end{displaymath} (25)

Equation (25) gives for the small circle a numerical density before the explosion of $n_{01}=374~{\rm cm}^{-3}$ and for the large circle $n_{02}=93~{\rm cm}^{-3}$. From our star counts and the derived densities corresponding to the isopleths we have found that in the small circle the number density corresponding to the brightest stars with age about $5 \times10^6$ yr is 14 times the background value whereas in the large circle it is 3.2 times. The ratio of the two is about 5 with 30% error. The ratio in the above theoretical densities is 4. This is a very good result considering the errors. The triggering star formation for the two possible supernova explosions has been verified by using the image of stellar densities. Isodensity contour plots present older B populations at the centers of our study regions (Fig. 2). These populations remain until the slice corresponding to main sequence B stars with ages between $1.2 \times 10^7$ and $3 \times 10^7$ yr. That means that the two possible supernova explosions occurred about $3 \times 10^7$ yr ago.

The diagrams of Fig. 2 are actually isopleths showing all main sequence stars at four levels of magnitude. We indicate at what magnitude level (marked in terms of age, Table 1) the OB stars disappear, as expected. In this case we determine the number of stars per unit pixel by using the values of background b and standard deviation $\sigma$. The values used to determine these isopleths are: b=0.2 and $\sigma=0.29$ stars per pixel for the upper left, b=0.59 and $\sigma=0.33$ stars per pixel for the upper right, b=0.71 and $\sigma=0.66$ stars per pixel for the lower left and b=1.1 and $\sigma=0.68$ stars per pixel for the lower right. The isopleth density is given by $b+3\sigma$. In the lower right case of Fig. 2 there are no isopleth density contours because the contrast is not high enough.

6 Conclusions

In this paper we attempt to show by a systematic observational method that it is possible to generate the birth of massive OB stars by triggered effects like supernova explosions. We have chosen the region N83-84-85 of the inner wing of SMC and we detected all the non-saturated OB stars in an objective prism plate of this region. We extracted and classified the stars automatically, using a method developed previously by us. The spatial distribution of the OB stars was found to be non-uniform with holes and high density parts that could be explained as star formation regions caused by supernovae. Two possible cases have been studied. The theoretical approach was the same as Ehlerová et al. (1997) but for isolated explosions. From the observations we estimated the radius where the new population is born assuming that the supernova explosions occurred at their centers and from the theoretical equations we extracted the numerical densities of the ISM before the explosions. A study of isopleths of the stellar population of this region, from direct plates at various magnitude slices, provides an estimation of the time when the possible explosions took place. Finally the actual catalogue of the detected OB stars is given.

Acknowledgements
The authors are grateful to ROE for the loan of the observational material. The authors also thank F. Maragoudaki and E. Livanou for the contour programs. M.K. would like to thank the ELKE of the EKPAN (University of Athens) for financial support.

References

  

  
7 Online Material


 

 
Table 3: Detected (non-saturated) OB stars in our region.
Number RA(2000) Dec(2000) Number RA(2000) Dec(2000) Number RA(2000) Dec(2000)
  $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$

1

01 18 58 -73 37 28 42 01 17 35 -73 32 00 83 01 17 45 -73 28 47
2 01 18 60 -73 37 08 43 01 18 60 -73 31 26 84 01 13 53 -73 30 04
3 01 20 47 -73 36 19 44 01 20 19 -73 30 44 85 01 17 52 -73 28 42
4 01 17 53 -73 37 24 45 01 20 33 -73 30 35 86 01 14 29 -73 29 51
5 01 16 34 -73 37 46 46 01 18 05 -73 31 29 87 01 16 14 -73 29 08
6 01 14 12 -73 38 23 47 01 15 11 -73 32 29 88 01 17 59 -73 28 23
7 01 18 39 -73 36 42 48 01 18 15 -73 31 22 89 01 19 16 -73 27 44
8 01 20 04 -73 36 04 49 01 20 21 -73 30 18 90 01 19 17 -73 27 43
9 01 14 17 -73 38 03 50 01 19 01 -73 30 51 91 01 19 31 -73 27 34
10 01 15 41 -73 37 18 51 01 19 36 -73 30 35 92 01 17 19 -73 28 24
11 01 12 38 -73 38 09 52 01 16 08 -73 31 48 93 01 18 40 -73 27 46
12 01 14 26 -73 37 35 53 01 19 30 -73 30 28 94 01 17 23 -73 28 08
13 01 17 55 -73 36 19 54 01 15 11 -73 31 58 95 01 19 04 -73 27 10
14 01 16 46 -73 36 36 55 01 14 58 -73 31 59 96 01 16 36 -73 28 05
15 01 20 45 -73 34 59 56 01 17 60 -73 30 50 97 01 18 09 -73 27 30
16 01 20 37 -73 34 59 57 01 19 38 -73 30 08 98 01 14 30 -73 28 32
17 01 20 36 -73 34 58 58 01 19 38 -73 30 04 99 01 14 55 -73 28 23
18 01 20 12 -73 35 03 59 01 15 38 -73 31 31 100 01 19 01 -73 26 53
19 01 16 04 -73 36 32 60 01 13 42 -73 32 01 101 01 15 03 -73 28 19
20 01 16 25 -73 36 09 61 01 17 44 -73 30 37 102 01 17 59 -73 27 17
21 01 19 31 -73 34 55 62 01 20 03 -73 29 40 103 01 19 58 -73 26 24
22 01 14 29 -73 36 38 63 01 16 45 -73 30 56 104 01 20 24 -73 26 05
23 01 16 46 -73 35 50 64 01 19 05 -73 29 54 105 01 15 47 -73 27 51
24 01 19 43 -73 34 31 65 01 19 47 -73 29 37 106 01 16 56 -73 27 26
25 01 19 44 -73 34 20 66 01 20 38 -73 29 08 107 01 18 58 -73 26 36
26 01 18 09 -73 34 25 67 01 14 08 -73 31 25 108 01 13 16 -73 28 33
27 01 20 05 -73 33 26 68 01 14 27 -73 31 06 109 01 17 46 -73 27 03
28 01 15 54 -73 34 47 69 01 15 25 -73 30 47 110 01 15 44 -73 27 46
29 01 20 19 -73 32 43 70 01 18 46 -73 29 23 111 01 15 02 -73 27 57
30 01 13 59 -73 34 55 71 01 13 07 -73 31 14 112 01 14 46 -73 27 56
31 01 12 38 -73 35 16 72 01 14 54 -73 30 36 113 01 15 40 -73 27 37
32 01 17 01 -73 33 32 73 01 15 35 -73 30 20 114 01 16 44 -73 27 10
33 01 19 45 -73 32 15 74 01 17 57 -73 29 22 115 01 14 24 -73 27 54
34 01 17 49 -73 32 60 75 01 19 02 -73 28 53 116 01 16 43 -73 27 06
35 01 18 32 -73 32 43 76 01 17 05 -73 29 37 117 01 16 15 -73 27 08
36 01 16 39 -73 33 19 77 01 16 19 -73 29 48 118 01 15 25 -73 27 24
37 01 16 53 -73 33 04 78 01 17 22 -73 29 08 119 01 20 38 -73 25 23
38 01 18 44 -73 32 04 79 01 20 31 -73 27 45 120 01 15 44 -73 27 01
39 01 17 31 -73 32 29 80 01 16 33 -73 29 19 121 01 17 10 -73 26 29
40 01 19 20 -73 31 39 81 01 16 12 -73 29 23 122 01 18 35 -73 25 56
41 01 14 53 -73 33 08 82 01 12 48 -73 30 25 123 01 14 59 -73 27 03

Number RA(2000) Dec(2000) Number RA(2000) Dec(2000) Number RA(2000) Dec(2000)
  $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$

124

01 14 11 -73 27 09 165 01 18 59 -73 23 10 206 01 19 43 -73 20 19
125 01 18 23 -73 25 36 166 01 15 18 -73 24 24 207 01 13 10 -73 22 32
126 01 20 05 -73 24 53 167 01 17 13 -73 23 40 208 01 14 56 -73 21 60
127 01 16 25 -73 26 19 168 01 18 37 -73 23 01 209 01 12 20 -73 22 42
128 01 13 52 -73 27 06 169 01 18 19 -73 23 05 210 01 12 22 -73 22 41
129 01 15 55 -73 26 24 170 01 20 13 -73 22 12 211 01 19 00 -73 20 26
130 01 17 11 -73 25 54 171 01 15 36 -73 23 53 212 01 18 48 -73 20 28
131 01 12 26 -73 27 19 172 01 20 10 -73 22 06 213 01 16 43 -73 21 12
132 01 14 17 -73 26 42 173 01 19 43 -73 22 16 214 01 19 22 -73 20 11
133 01 15 55 -73 25 59 174 01 13 26 -73 24 24 215 01 13 36 -73 22 10
134 01 14 60 -73 26 16 175 01 15 36 -73 23 39 216 01 19 07 -73 20 01
135 01 19 28 -73 24 37 176 01 14 59 -73 23 49 217 01 20 10 -73 19 32
136 01 16 00 -73 25 53 177 01 15 15 -73 23 41 218 01 13 28 -73 21 53
137 01 17 58 -73 25 02 178 01 18 28 -73 22 31 219 01 15 15 -73 21 21
138 01 19 50 -73 24 16 179 01 16 32 -73 23 11 220 01 15 50 -73 21 08
139 01 18 23 -73 24 46 180 01 13 22 -73 24 04 221 01 18 38 -73 20 06
140 01 13 23 -73 26 26 181 01 19 32 -73 21 51 222 01 17 48 -73 20 23
141 01 18 10 -73 24 48 182 01 13 54 -73 23 50 223 01 12 45 -73 21 56
142 01 15 07 -73 25 39 183 01 16 35 -73 22 58 224 01 16 29 -73 20 44
143 01 16 03 -73 25 20 184 01 18 02 -73 22 19 225 01 16 13 -73 20 49
144 01 18 05 -73 24 33 185 01 20 24 -73 21 20 226 01 16 09 -73 20 48
145 01 14 47 -73 25 39 186 01 15 42 -73 22 52 227 01 16 15 -73 20 43
146 01 16 06 -73 25 12 187 01 15 59 -73 22 44 228 01 19 12 -73 19 34
147 01 13 31 -73 25 51 188 01 16 09 -73 22 38 229 01 13 39 -73 21 28
148 01 15 47 -73 25 05 189 01 12 51 -73 23 35 230 01 13 26 -73 21 31
149 01 15 53 -73 25 03 190 01 16 53 -73 22 16 231 01 13 15 -73 21 33
150 01 15 03 -73 25 15 191 01 14 46 -73 22 57 232 01 19 19 -73 19 25
151 01 12 46 -73 25 53 192 01 14 48 -73 22 56 233 01 18 53 -73 19 32
152 01 13 44 -73 25 36 193 01 19 53 -73 21 03 234 01 20 19 -73 18 57
153 01 20 04 -73 23 12 194 01 13 52 -73 23 04 235 01 15 32 -73 20 41
154 01 17 32 -73 24 13 195 01 18 52 -73 21 12 236 01 19 56 -73 18 58
155 01 17 30 -73 24 11 196 01 18 27 -73 21 15 237 01 19 40 -73 19 04
156 01 19 60 -73 23 07 197 01 16 22 -73 21 59 238 01 15 34 -73 20 35
157 01 17 59 -73 23 52 198 01 18 20 -73 21 15 239 01 18 33 -73 19 30
158 01 16 23 -73 24 27 199 01 15 34 -73 22 04 240 01 17 32 -73 19 53
159 01 13 29 -73 25 19 200 01 16 20 -73 21 47 241 01 17 51 -73 19 44
160 01 14 49 -73 24 55 201 01 18 09 -73 21 06 242 01 16 39 -73 20 10
161 01 13 39 -73 25 13 202 01 16 55 -73 21 31 243 01 15 20 -73 20 34
162 01 13 05 -73 25 17 203 01 13 39 -73 22 33 244 01 12 36 -73 21 21
163 01 15 08 -73 24 39 204 01 16 50 -73 21 29 245 01 19 22 -73 19 03
164 01 17 45 -73 23 41 205 01 18 02 -73 20 59 246 01 16 07 -73 20 10

Number RA(2000) Dec(2000) Number RA(2000) Dec(2000) Number RA(2000) Dec(2000)
  $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$

247

01 18 24 -73 19 17 288 01 19 47 -73 17 06 329 01 14 26 -73 17 10
248 01 17 42 -73 19 32 289 01 20 27 -73 16 47 330 01 12 43 -73 17 38
249 01 16 25 -73 19 57 290 01 19 42 -73 17 06 331 01 19 58 -73 14 55
250 01 16 01 -73 20 04 291 01 16 41 -73 18 03 332 01 18 03 -73 15 41
251 01 16 29 -73 19 54 292 01 19 32 -73 16 57 333 01 17 29 -73 15 53
252 01 17 55 -73 19 22 293 01 16 37 -73 17 57 334 01 14 35 -73 16 46
253 01 12 35 -73 20 57 294 01 16 06 -73 18 07 335 01 18 28 -73 15 24
254 01 18 02 -73 19 10 295 01 17 13 -73 17 40 336 01 18 31 -73 15 15
255 01 17 59 -73 19 08 296 01 14 41 -73 18 30 337 01 18 15 -73 15 16
256 01 16 05 -73 19 48 297 01 19 15 -73 16 51 338 01 19 37 -73 14 43
257 01 15 58 -73 19 50 298 01 16 36 -73 17 51 339 01 12 31 -73 17 07
258 01 16 43 -73 19 34 299 01 14 38 -73 18 26 340 01 15 34 -73 16 11
259 01 14 55 -73 20 06 300 01 19 03 -73 16 50 341 01 20 21 -73 14 19
260 01 16 35 -73 19 32 301 01 16 28 -73 17 45 342 01 16 24 -73 15 47
261 01 14 33 -73 20 03 302 01 19 34 -73 16 31 343 01 17 27 -73 15 24
262 01 20 12 -73 17 54 303 01 14 45 -73 18 15 344 01 17 34 -73 15 19
263 01 13 08 -73 20 23 304 01 17 47 -73 17 11 345 01 17 51 -73 15 08
264 01 13 09 -73 20 23 305 01 18 01 -73 17 01 346 01 14 40 -73 16 12
265 01 15 47 -73 19 34 306 01 17 02 -73 17 21 347 01 20 05 -73 14 11
266 01 16 40 -73 19 16 307 01 15 41 -73 17 49 348 01 19 55 -73 14 04
267 01 15 42 -73 19 34 308 01 16 04 -73 17 40 349 01 15 29 -73 15 37
268 01 14 47 -73 19 45 309 01 16 24 -73 17 28 350 01 16 43 -73 15 07
269 01 15 35 -73 19 26 310 01 17 43 -73 16 59 351 01 14 17 -73 15 49
270 01 15 40 -73 19 25 311 01 12 19 -73 18 40 352 01 18 23 -73 14 24
271 01 20 17 -73 17 34 312 01 15 43 -73 17 40 353 01 16 25 -73 15 06
272 01 19 23 -73 17 56 313 01 16 30 -73 17 22 354 01 20 18 -73 13 33
273 01 16 02 -73 19 10 314 01 17 09 -73 17 08 355 01 19 32 -73 13 52
274 01 15 53 -73 19 10 315 01 16 28 -73 17 16 356 01 19 43 -73 13 45
275 01 15 55 -73 19 08 316 01 17 15 -73 16 59 357 01 16 29 -73 14 55
276 01 18 37 -73 18 09 317 01 19 10 -73 16 14 358 01 20 16 -73 13 26
277 01 17 55 -73 18 15 318 01 14 21 -73 17 51 359 01 13 52 -73 15 44
278 01 19 09 -73 17 45 319 01 19 37 -73 15 50 360 01 18 12 -73 14 16
279 01 15 33 -73 19 03 320 01 15 33 -73 17 19 361 01 18 16 -73 14 12
280 01 19 15 -73 17 41 321 01 15 16 -73 17 23 362 01 15 20 -73 15 11
281 01 17 18 -73 18 24 322 01 13 28 -73 17 55 363 01 16 54 -73 14 39
282 01 19 08 -73 17 41 323 01 16 44 -73 16 49 364 01 14 58 -73 15 12
283 01 12 58 -73 19 44 324 01 12 26 -73 18 08 365 01 19 41 -73 13 26
284 01 16 17 -73 18 41 325 01 13 12 -73 17 51 366 01 15 32 -73 14 57
285 01 12 36 -73 19 47 326 01 16 58 -73 16 34 367 01 15 26 -73 14 50
286 01 16 45 -73 18 25 327 01 12 46 -73 17 46 368 01 15 57 -73 14 39
287 01 20 10 -73 16 59 328 01 20 10 -73 15 11 369 01 20 05 -73 13 03

Number RA(2000) Dec(2000) Number RA(2000) Dec(2000) Number RA(2000) Dec(2000)
  $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$
370 01 18 18 -73 13 44 411 01 14 38 -73 13 04 452 01 17 20 -73 10 45
371 01 17 06 -73 14 09 412 01 18 42 -73 11 39 453 01 18 59 -73 10 06
372 01 12 52 -73 15 20 413 01 20 06 -73 10 59 454 01 16 59 -73 10 51
373 01 19 45 -73 12 58 414 01 17 01 -73 12 10 455 01 17 11 -73 10 47
374 01 13 08 -73 15 15 415 01 14 54 -73 12 51 456 01 19 33 -73 09 50
375 01 17 44 -73 13 39 416 01 15 46 -73 12 35 457 01 17 57 -73 10 23
376 01 17 52 -73 13 28 417 01 16 00 -73 12 28 458 01 17 50 -73 10 19
377 01 20 23 -73 12 20 418 01 17 30 -73 11 56 459 01 17 24 -73 10 27
378 01 17 32 -73 13 26 419 01 19 04 -73 11 16 460 01 15 53 -73 10 49
379 01 16 47 -73 13 40 420 01 13 40 -73 13 04 461 01 17 43 -73 10 03
380 01 16 06 -73 13 54 421 01 18 57 -73 11 09 462 01 18 09 -73 09 53
381 01 17 27 -73 13 22 422 01 15 41 -73 12 20 463 01 18 50 -73 09 35
382 01 17 22 -73 13 21 423 01 18 28 -73 11 20 464 01 12 36 -73 11 32
383 01 18 54 -73 12 42 424 01 19 49 -73 10 47 465 01 16 56 -73 10 12
384 01 13 21 -73 14 33 425 01 17 29 -73 11 42 466 01 15 40 -73 10 37
385 01 15 39 -73 13 50 426 01 17 44 -73 11 35 467 01 15 57 -73 10 31
386 01 19 18 -73 12 23 427 01 18 54 -73 11 08 468 01 19 45 -73 09 02
387 01 19 51 -73 12 09 428 01 14 58 -73 12 32 469 01 14 10 -73 11 01
388 01 17 30 -73 13 01 429 01 13 25 -73 12 59 470 01 18 12 -73 09 37
389 01 17 56 -73 12 51 430 01 19 30 -73 10 43 471 01 18 18 -73 09 28
390 01 19 43 -73 12 04 431 01 17 55 -73 11 18 472 01 13 55 -73 10 53
391 01 16 49 -73 13 09 432 01 19 12 -73 10 47 473 01 14 27 -73 10 39
392 01 19 03 -73 12 14 433 01 16 58 -73 11 37 474 01 19 42 -73 08 46
393 01 12 53 -73 14 18 434 01 19 37 -73 10 35 475 01 18 42 -73 09 09
394 01 19 35 -73 11 56 435 01 18 48 -73 10 54 476 01 14 05 -73 10 42
395 01 14 35 -73 13 44 436 01 13 35 -73 12 34 477 01 17 02 -73 09 42
396 01 18 22 -73 12 23 437 01 13 27 -73 12 35 478 01 16 50 -73 09 39
397 01 15 34 -73 13 22 438 01 15 37 -73 11 55 479 01 16 19 -73 09 49
398 01 19 20 -73 11 59 439 01 13 23 -73 12 28 480 01 14 24 -73 10 23
399 01 19 36 -73 11 50 440 01 13 52 -73 12 20 481 01 15 08 -73 10 10
400 01 16 51 -73 12 51 441 01 12 57 -73 12 34 482 01 18 16 -73 09 04
401 01 14 40 -73 13 33 442 01 16 15 -73 11 34 483 01 15 28 -73 10 01
402 01 15 59 -73 13 05 443 01 15 31 -73 11 45 484 01 15 43 -73 09 55
403 01 14 31 -73 13 31 444 01 13 32 -73 12 20 485 01 15 41 -73 09 53
404 01 19 01 -73 11 56 445 01 16 19 -73 11 25 486 01 15 19 -73 09 58
405 01 14 16 -73 13 29 446 01 17 04 -73 11 10 487 01 17 25 -73 09 15
406 01 17 11 -73 12 22 447 01 17 31 -73 10 51 488 01 19 34 -73 08 22
407 01 17 40 -73 12 11 448 01 20 18 -73 09 43 489 01 14 42 -73 10 07
408 01 18 14 -73 11 57 449 01 12 09 -73 12 24 490 01 16 48 -73 09 24
409 01 20 11 -73 11 04 450 01 14 16 -73 11 49 491 01 19 07 -73 08 26
410 01 16 09 -73 12 36 451 01 19 07 -73 10 06 492 01 17 46 -73 08 56

Number RA(2000) Dec(2000) Number RA(2000) Dec(2000) Number RA(2000) Dec(2000)
  $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$   $\rm ~h~~m~~s~$ $~~~^\circ~~~'~~~''~$
493 01 16 24 -73 09 25 534 01 14 01 -73 08 02 575 01 13 46 -73 05 01
494 01 14 20 -73 10 03 535 01 14 32 -73 07 50 576 01 20 05 -73 02 45
495 01 15 17 -73 09 44 536 01 17 55 -73 06 41 577 01 19 13 -73 03 03
496 01 15 37 -73 09 37 537 01 17 48 -73 06 38 578 01 17 09 -73 03 48
497 01 16 44 -73 09 08 538 01 20 08 -73 05 41 579 01 19 11 -73 02 55
498 01 15 30 -73 09 33 539 01 19 36 -73 05 49 580 01 19 10 -73 02 54
499 01 18 27 -73 08 28 540 01 19 42 -73 05 46 581 01 13 07 -73 04 55
500 01 19 31 -73 07 58 541 01 19 33 -73 05 45 582 01 17 44 -73 03 20
501 01 13 19 -73 10 05 542 01 15 15 -73 07 19 583 01 13 27 -73 04 38
502 01 13 48 -73 09 54 543 01 14 10 -73 07 33 584 01 14 59 -73 04 10
503 01 19 15 -73 07 59 544 01 13 22 -73 07 37 585 01 16 58 -73 03 26
504 01 16 54 -73 08 49 545 01 20 09 -73 05 13 586 01 16 41 -73 03 31
505 01 16 02 -73 08 59 546 01 16 56 -73 06 28 587 01 13 51 -73 04 19
506 01 15 50 -73 09 02 547 01 19 42 -73 05 19 588 01 12 07 -73 04 39
507 01 14 09 -73 09 33 548 01 17 19 -73 06 05 589 01 17 24 -73 02 57
508 01 16 38 -73 08 43 549 01 19 20 -73 05 17 590 01 13 29 -73 04 06
509 01 15 56 -73 08 55 550 01 14 15 -73 06 59 591 01 16 04 -73 02 39
510 01 16 48 -73 08 37 551 01 17 48 -73 05 45 592 01 18 56 -73 01 30
511 01 14 16 -73 09 23 552 01 15 50 -73 06 21 593 01 14 29 -73 03 02
512 01 16 22 -73 08 43 553 01 14 43 -73 06 39 594 01 15 58 -73 02 24
513 01 18 01 -73 08 05 554 01 19 56 -73 04 44 595 01 19 39 -73 00 59
514 01 17 16 -73 08 13 555 01 18 13 -73 05 20 596 01 17 28 -73 01 41
515 01 15 21 -73 08 51 556 01 12 23 -73 07 11 597 01 14 34 -73 02 32
516 01 18 11 -73 07 48 557 01 16 12 -73 05 47 598 01 19 42 -73 00 24
517 01 13 37 -73 09 10 558 01 17 56 -73 05 10 599 01 12 37 -73 02 40
518 01 20 07 -73 06 52 559 01 13 38 -73 06 34 600 01 16 08 -73 01 11
519 01 14 35 -73 08 49 560 01 19 34 -73 04 27 601 01 14 38 -73 01 34
520 01 13 60 -73 08 58 561 01 18 20 -73 04 47 602 01 12 05 -73 02 14
521 01 16 26 -73 08 12 562 01 15 60 -73 05 19 603 01 14 20 -73 01 32
522 01 16 33 -73 08 05 563 01 18 04 -73 04 35 604 01 12 21 -73 01 39
523 01 19 17 -73 06 48 564 01 16 42 -73 05 01 605 01 16 15 -73 00 22
524 01 17 53 -73 07 17 565 01 17 12 -73 04 44 606 01 19 60 -73 58 55
525 01 17 01 -73 07 35 566 01 19 06 -73 03 49 607 01 17 52 -73 59 44
526 01 17 46 -73 07 13 567 01 12 48 -73 05 48 608 01 13 20 -73 01 08
527 01 17 24 -73 07 19 568 01 18 01 -73 04 02 609 01 13 29 -73 01 06
528 01 15 59 -73 07 47 569 01 16 01 -73 04 41 610 01 15 41 -73 00 26
529 01 14 51 -73 08 08 570 01 16 19 -73 04 28      
530 01 13 13 -73 08 26 571 01 16 13 -73 04 28      
531 01 16 14 -73 07 29 572 01 15 15 -73 04 47      
532 01 12 13 -73 08 34 573 01 15 38 -73 04 34      
533 01 15 25 -73 07 37 574 01 18 45 -73 03 25      




Copyright ESO 2004