Table 3: The details of the four most important configurations in Fe X. The percentage of level mixing (>10%) is indicated in second column. For example, level 27 is mixed with level 3 of configuration c2 by 23%. $E_{\rm best}$ indicates the best energies (cm-1) which we propose in this work. The uncertainties in the energies reflect the estimated errors in the wavelength measurements. Levels with uncertain identification are assigned an uncertainty of 500 cm-1. The following columns indicate the differences between our  $E_{\rm best}$ and the energies from NIST  $E_{\rm NIST}$, the collisional calculations  $E_{\rm CC}$, and the adjusted SS values  $E_{\rm SS}$. Levels are ordered according to the energies  $E_{\rm CC}$ from the collisional calculations.

i
Configuration (% purity) Term $E_{\rm best}$ $E_{\rm best}-E_{\rm NIST}$ $E_{\rm best}-E_{\rm CC}$ $E_{\rm best}-E_{\rm SS}$

1
3s2 3p5(96%) 2P $_{3/2}^{\rm o}$ 0.0 $\pm $ 0 0 0 0
2 3s2 3p5(96%) 2P $_{1/2}^{\rm o}$ 15683.1 $\pm $ 1 0 +912 -143
3 3s 3p6(72%) +27(c3 24%) 2S $_{1/2}^{\rm e}$ 289236.0 $\pm $ 5 -13 +517 -7
4 3s2 3p4 (3P) 3d(93%) 4D $_{5/2}^{\rm e}$ 388713.5 $\pm $ 5 4.5 -4255 +34
5 3s2 3p4 (3P) 3d(94%) 4D $_{7/2}^{\rm e}$ 388708.0 $\pm $ 5 -1 -4371 -116
6 3s2 3p4 (3P) 3d(92%) 4D $_{3/2}^{\rm e}$ 390019.0 $\pm $ 50 -31 -4047 +224
7 3s2 3p4 (3P) 3d(92%) 4D $_{1/2}^{\rm e}$ 391554.0 $\pm $ 50 -1 -3829 +351
8 3s2 3p4 (3P) 3d(92%) 4F $_{9/2}^{\rm e}$ 417652.0 $\pm $ 5 -1 -6263 +233
9 3s2 3p4 (1D) 3d(41%) +29(49%) 2P $_{1/2}^{\rm e}$ 414249.0 $\pm $ 500 - -10983 0
10 3s2 3p4 (3P) 3d(89%) 4F $_{7/2}^{\rm e}$ 422785.0 $\pm $ 10 -10 -5848 +334
11 3s2 3p4 (3P) 3d(95%) 4F $_{5/2}^{\rm e}$ 426260.0 $\pm $ 500 -503 -5885 0
12 3s2 3p4 (3P) 3d(86%) 4F $_{3/2}^{\rm e}$ 427604.0 $\pm $ 500 -694 -5529 0
13 3s2 3p4 (1D) 3d(50%) +28(38%) 2P $_{3/2}^{\rm e}$ 422844.0 $\pm $ 500 -9084 -10837 +161
14 3s2 3p4 (3P) 3d(95%) 4P $_{1/2}^{\rm e}$ 433526.0 $\pm $ 500 -1274 -6959 0
15 3s2 3p4 (1D) 3d(28%) +31(26%) +25(25%) 2D $_{3/2}^{\rm e}$ 433088.0 $\pm $ 500 -1526 -7507 0
16 3s2 3p4 (3P) 3d(83%) 4P $_{3/2}^{\rm e}$ 438168.0 $\pm $ 500 - -7036 0
17 3s2 3p4 (3P) 3d(21%) +30(15%) +26(11%) +19(45%) 2D $_{5/2}^{\rm e}$ 440125.0 $\pm $ 500 -1728 -7493 -355
18 3s2 3p4 (3P) 3d(50%) +21(31%) 2F $_{7/2}^{\rm e}$ 440839.0 $\pm $ 5 -1 -6999 -134
19 3s2 3p4 (1D) 3d(48%) +17(11%) +30(12%) +26(19%) 4P $_{5/2}^{\rm e}$ 442760.0 $\pm $ 500 - -6833 -161
20 3s2 3p4 (1D) 3d(92%) 2G $_{9/2}^{\rm e}$ 450754.0 $\pm $ 5 3 -7070 -28
21 3s2 3p4 (1D) 3d(62%) +18(25%) 2G $_{7/2}^{\rm e}$ 451083.0 $\pm $ 5 -1 -6850 -14
22 3s2 3p4 (3P) 3d(72%) +23(20%) 2F $_{5/2}^{\rm e}$ 454036.0 $\pm $ 50 1306 -6312 -126
23 3s2 3p4 (1D) 3d(76%) +22(17%) 2F $_{5/2}^{\rm e}$ 482046.0 $\pm $ 50 - -7382 -92
24 3s2 3p4 (1D) 3d(78%) +18(17%) 2F $_{7/2}^{\rm e}$ 485982.0 $\pm $ 5 -1 -7287 -48
25 3s2 3p4 (1S) 3d(57%) +15(35%) 2D $_{3/2}^{\rm e}$ 511992.0 $\pm $ 500 192 -7614 0
26 3s2 3p4 (1S) 3d(49%) +17(42%) 2D $_{5/2}^{\rm e}$ 516222.0 $\pm $ 50 - -7664 0
27 3s2 3p4 (1D) 3d(70%) +3(c2 23%) 2S $_{1/2}^{\rm e}$ 541897.0 $\pm $ 5 18 -13264 +34
28 3s2 3p4 (3P) 3d(50%) +13(39%) 2P $_{3/2}^{\rm e}$ 564208.0 $\pm $ 5 10 -12461 -137
29 3s2 3p4 (3P) 3d(43%) +9(51%) 2P $_{1/2}^{\rm e}$ 569882.0 $\pm $ 20 -103 -12494 -387
30 3s2 3p4 (3P) 3d(66%) +17(18%) +26(10%) 2D $_{5/2}^{\rm e}$ 572964.0 $\pm $ 5 10 -14240 -100
31 3s2 3p4 (3P) 3d(61%) +15(21%) 2D $_{3/2}^{\rm e}$ 586254.0 $\pm $ 5 10 -13570 +68
32 3s 3p5 (3P) 3d(82%) 4P $_{1/2}^{\rm o}$ 661175.0 $\pm $ 500 - -49672 0
33 3s 3p5 (3P) 3d(81%) 4P $_{3/2}^{\rm o}$ 663782.0 $\pm $ 500 - -49875 0
34 3s 3p5 (3P) 3d(81%) 4P $_{5/2}^{\rm o}$ 668467.0 $\pm $ 500 - -50143 0
35 3s 3p5 (3P) 3d(85%) +(c5 10%) 4F $_{9/2}^{\rm o}$ 694225.0 $\pm $ 500 -2436 -36455 0
36 3s 3p5 (3P) 3d(82%) +(c5 10%) 4F $_{7/2}^{\rm o}$ 697016.0 $\pm $ 500 -2476 -36655 0
37 3s 3p5 (3P) 3d(82%) +(c5 10%) 4F $_{5/2}^{\rm o}$ 700011.0 $\pm $ 500 -2574 -36665 0
38 3s 3p5 (3P) 3d(82%) +(c5 10%) 4F $_{3/2}^{\rm o}$ 702749.0 $\pm $ 500 -2681 -36540 0
39 3s 3p5 (3P) 3d(78%) 4D $_{7/2}^{\rm o}$ 726123.0 $\pm $ 500 - -40893 0
40 3s 3p5 (3P) 3d(77%) 4D $_{5/2}^{\rm o}$ 727681.0 $\pm $ 500 - -41025 0
41 3s 3p5 (3P) 3d(79%) 4D $_{1/2}^{\rm o}$ 727262.0 $\pm $ 500 - -41541 0
42 3s 3p5 (3P) 3d(78%) 4D $_{3/2}^{\rm o}$ 727821.0 $\pm $ 500 - -41219 0
43 3s 3p5 (3P) 3d(73%) +(c5 11%) 2F $_{7/2}^{\rm o}$ 737368.0 $\pm $ 30 - -55850 -31
44 3s 3p5 (3P) 3d(49%) +46(27%) 2D $_{5/2}^{\rm o}$ 741260.0 $\pm $ 500 - -54926 0
45 3s 3p5 (3P) 3d(72%) 2D $_{3/2}^{\rm o}$ 745812.0 $\pm $ 500 - -53573 0
46 3s 3p5 (3P) 3d(49%) +44(27%) 2F $_{5/2}^{\rm o}$ 749382.0 $\pm $ 500 - -52559 0
47 3s 3p5 (1P) 3d(41%) +54(24%) +(c5 24%) 2P $_{1/2}^{\rm o}$ 760037.0 $\pm $ 500 - -67068 0
48 3s 3p5 (1P) 3d(38%) +53(19%) +(c5 22%) 2P $_{3/2}^{\rm o}$ 767867.0 $\pm $ 500 - -67057 0
49 3s 3p5 (1P) 3d(57%) +(c5 12%) 2F $_{5/2}^{\rm o}$ 789807.0 $\pm $ 500 - -81159 0
50 3s 3p5 (1P) 3d(55%) +(c5 13%) 2F $_{7/2}^{\rm o}$ 793645.0 $\pm $ 500 - -78575 0
51 3s 3p5 (1P) 3d(41%) +(c5 14%) 2D $_{3/2}^{\rm o}$ 818347.0 $\pm $ 500 - -81018 0
52 3s 3p5 (1P) 3d(36%) +(c5 12%) +(c5 12%) 2D $_{5/2}^{\rm o}$ 819974.0 $\pm $ 500 - -80209 0
53 3s 3p5 (3P) 3d(54%) +(c5 18%) 2P $_{3/2}^{\rm o}$ 865405.0 $\pm $ 500 - -108711 0
54 3s 3p5 (3P) 3d(53%) +(c5 22%) 2P $_{1/2}^{\rm o}$ 864829.0 $\pm $ 500 - -110431 0


Source LaTeX | All tables | In the text