... plateau[*]
This denomination refers to the remarkably constant and flat lithium abundances among the metal-poor galactic halo dwarfs with effective temperature between $\sim$5700 and 6300 K.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...R[*]
This differential rotation is somewhat smaller than the value used in Paper I. In the figures, points corresponding to Pop I stars are calculated using the same model as those in Paper I, but with the new preferred value for the differential rotation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... waves[*]
This will be the case if differential rotation is of the same order as $\omega$ and $K_{\rm T}$ is large enough.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...$\nu _{\rm max}$)[*]
$\nu _{\rm max}$, the maximum frequency required to capture the wave-mean flow interaction, is determined empirically.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Mermilliod[*]
http://obswww.unige.ch/webda
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...2003a)[*]
In all the globular clusters studied up to now, all the HB stars hotter than  $T_{\rm eff} \sim 11~500$ K have $v\sin i \leq$ 8-12 km s-1 (Recio-Blanco et al. 2002). Among the cooler HB stars, there is a range of rotation rates and fast rotators appear.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... rotation[*]
In view of the solar data, Sills & Pinsonneault (2000) favor the class of models with constant specific angular momentum (i.e., differential rotation) in giant branch envelopes, retention of a rapidly rotating core on the RGB and subsequent angular momentum redistribution from the core to the envelope on the HB. Even this class of models requires relatively high surface rotation ($\sim$4 km s-1) at the main sequence turnoff to explain the high rotation rates for the cooler HB stars.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copyright ESO 2004