Table 2: Adopted Ba ( $Y_{{\rm Ba}}(m)$) and Eu ( $Y_{{\rm Eu}}(m)$) yields and ejected r-process matter ($M_{\rm r}$) as function of progenitor mass m of models SN810, SN2025 and SN2050. Yields in the mass range 8- $10 ~ {M}_{\odot}$ are assumed to be constant (SN810). Yields in the mass range 20- $25 ~ {M}_{\odot}$ are linearly interpolated (SN2025). Yields of model SN2050 exhibit a more complex behaviour: a rapid decline in the mass range 20- $28 ~ {M}_{\odot}$ is assumed. Progenitors with masses 28- $50 ~
{M}_{\odot}$ all have the same, constant yield.
m $Y_{{\rm Ba}}(m) ~ \left[{M}_{\odot}\right]$ $Y_{{\rm Eu}}(m) ~ \left[{M}_{\odot}\right]$ $M_{\rm r} ~ \left[{M}_{\odot}\right]$
8a $5.3 \times 10^{-7}$ $8.3 \times 10^{-8}$ $6.9 \times 10^{-6}$
10 $5.3 \times 10^{-7}$ $8.3 \times 10^{-8}$ $6.9 \times 10^{-6}$
20b $4.3 \times 10^{-6}$ $6.5 \times 10^{-7}$ $5.4 \times 10^{-5}$
25 $2.3 \times 10^{-8}$ $3.5 \times 10^{-9}$ $2.9 \times 10^{-7}$
20c $1.1 \times 10^{-5}$ $1.8 \times 10^{-6}$ $1.5 \times 10^{-4}$
21 $3.3 \times 10^{-6}$ $5.1 \times 10^{-7}$ $4.2 \times 10^{-5}$
22 $7.9 \times 10^{-7}$ $1.2 \times 10^{-7}$ $1.0 \times 10^{-5}$
23 $2.5 \times 10^{-7}$ $3.8 \times 10^{-8}$ $3.2 \times 10^{-6}$
24 $9.2 \times 10^{-8}$ $1.4 \times 10^{-8}$ $1.2 \times 10^{-6}$
25 $4.8 \times 10^{-8}$ $7.5 \times 10^{-9}$ $6.2 \times 10^{-7}$
26 $2.7 \times 10^{-8}$ $4.3 \times 10^{-9}$ $3.6 \times 10^{-7}$
27 $1.8 \times 10^{-8}$ $2.7 \times 10^{-9}$ $2.3 \times 10^{-7}$
28 $1.1 \times 10^{-8}$ $1.7 \times 10^{-9}$ $1.4 \times 10^{-7}$
50 $1.1 \times 10^{-8}$ $1.7 \times 10^{-9}$ $1.4 \times 10^{-7}$

Remarks: aModel SN810, bModel SN2025, cModel SN2050.

Source LaTeX | All tables | In the text