Table 11: Source counts after corrections for the detection rate and flux bias.
Cumulative counts, $N_{\rm c}$ (sr-1)   Differential counts, $\Delta N_{\rm c}/\Delta S_{\rm c}$ (Jy-1 sr-1)
C_90   C_160   C_90   C_160
$S_{\rm c}$(mJy)a $N_{\rm c}$b   $S_{\rm c}$(mJy) $N_{\rm c}$   $S_{\rm c}$(mJy)c $\Delta N_{\rm c}/\Delta S_{\rm c}$d   $S_{\rm c}$(mJy) $\Delta N_{\rm c}/\Delta S_{\rm c}$
400 (0.02) 3.63 $\times $ 103 (1.00)   400 (0.04) 7.42 $\times $ 103 (0.71)            
269 (0.02) 1.09 $\times $ 104 (0.58)   264 (0.04) 3.22 $\times $ 104 (0.36)   313 (0.02) 6.51 $\times $ 104 (0.71)   307 (0.04) 2.26 $\times $ 105 (0.42)
177 (0.03) 4.96 $\times $ 104 (0.28)   153 (0.05) 1.42 $\times $ 105 (0.22)   205 (0.03) 5.27 $\times $ 105 (0.32)   177 (0.05) 1.74 $\times $ 106 (0.26)
106 (0.03) 1.98 $\times $ 105 (0.15)         122 (0.03) 3.39 $\times $ 106 (0.18)      
56 (0.03) 1.43 $\times $ 106 (0.13)         65 (0.03) 5.31 $\times $ 107 (0.15)      
- Values in parentheses give errors relative to the preceding values; thus, abc (xyz) means $abc \pm abc*xyz$.
a $S_{\rm c}$ for cumulative counts is $S_{\rm obs}$ divided by the flux bias.
b $N_{\rm c}$ is the cumulative counts after the correction applied.
c $S_{\rm c}$ for cumulative counts is $S^{*}_{\rm obs}$ divided by the flux bias.
d $\Delta N_{\rm c}/\Delta S_{\rm c}$ is the differential counts after the correction has been applied.

Source LaTeX | All tables | In the text