Table 10: Source counts without the corrections.
Cumulative counts $N_{\rm obs}$ (sr-1)   Differential counts $\Delta N_{\rm obs}/\Delta S_{\rm obs}$ (Jy-1sr-1)
Flux C_90 C_160   Flux bin Eff. Flux C_90 C_160
$S_{\rm obs}$(mJy)       sua - sla $S^{*}_{\rm obs}$(mJy)b    
400 3.63 $\times $ 103 (1.00) 7.42 $\times $ 103 (0.71)     - 400      
283 1.09 $\times $ 104 (0.58) 2.97 $\times $ 104 (0.35)   400 - 283 328 6.20 $\times $ 104 (0.71) 1.90 $\times $ 105 (0.41)
200 4.73 $\times $ 104 (0.28) 1.00 $\times $ 105 (0.19)   283 - 200 232 4.39 $\times $ 105 (0.32) 8.51 $\times $ 105 (0.23)
141 1.67 $\times $ 105 (0.15) 2.30 $\times $ 105 (0.13)   200 - 141 164 2.05 $\times $ 106 (0.17) 2.22 $\times $ 106 (0.17)
100 5.38 $\times $ 105 (0.08) 2.60 $\times $ 105 (0.12)   141 - 100 116 8.95 $\times $ 106 (0.10) 7.16 $\times $ 105 (0.35)
70 7.60 $\times $ 105 (0.07) 2.67 $\times $ 105 (0.12)   100 - 70 82 7.57 $\times $ 106 (0.13) 2.53 $\times $ 105 (0.71)
- Values in parentheses give errors relative to the preceding values; thus, abc (xyz) means $abc \pm abc*xyz$.
a su = $\sqrt{2}$ sl, where su and sl denote upper and lower values in the respective flux bin.
b $S_{\rm obs}^{*}$, effective flux density defined as $S_{\rm obs}^{*} = \int_{sl}^{su}S({\rm d}N/{\rm d}S){\rm d}S / \int_{sl}^{su}({\rm d}N/{\rm d}S){\rm d}S$, where N(S) is the cumulative source counts for S or brighter. $S_{\rm obs}^{*} = 1.16sl$ for $N \propto S^{-3}$, while $S_{\rm obs}^{*} = 1.20sl$ for ${\rm d}N/{\rm d}S = {\rm constant}$. $S_{\rm obs}^{*} = 1.16sl$ is used in this work, because our counts can be approximated by $N \propto S^{-3.2}$ at C_90 and $N \propto S^{-2.9}$ at C_160.

Source LaTeX | All tables | In the text