Table 2: Parameters of the spectral modeling.
Parameter GX 340+0 4U1608-52
D, kpc 8.5 4.0
NH, cm-2 $5\times 10^{22}$ $1\times 10^{22}$
$F_{\rm 3-20~keV}$ 1 erg/s/cm2 $1.4\times 10^{-8}$ $4.2\times 10^{-9}$
$F_{\rm0.1-30~keV}$ 2 erg/s/cm2 $2.7\times 10^{-8}$ $8.8\times10^{-9}$
$L_{\rm0.1-30~keV}$ 2 erg/s $2.3\times 10^{38}$ $1.7\times 10^{37}$
$\dot{M}$ 3, g/s $3.1\times 10^{18}$ $2.0\times 10^{17}$
QPO frequency resolved spectra ($\approx $boundary layer)4
power law with exponential cutoff (phabs$\times$cutoffpl)
$\alpha$ $-0.55\pm0.16$ $-1.28\pm 0.13$
$E_{\rm f}$, keV $3.3\pm0.2$ $2.4\pm 0.1$
$\chi^2$/d.o.f. 13.9/16 4.8/9
Comptonization model (phabs$\times$comptt)
$kT_{\rm bb}$, keV $1.3\pm0.2$ $1.4\pm0.4$
$kT_{\rm e}$, keV 3.1-0.3+0.9 $2.6_{-0.3}^{+\infty}$
$\tau$ 6.0-2.1+1.8 6.7-5.3+5.7
$\chi^2$/d.o.f. 11.3/15 4.0/8
average spectra4
phabs$\times$(grad+pexrav+Gaussian)
inclination5 $60\hbox{$^\circ$ }$ $70\hbox{$^\circ$ }$
$T_{\rm col}/T_{\rm eff}$ 5 1.7 1.8
$\dot{M}$, 1018 g/s $3.0\pm 0.04$ $0.34\pm 0.01$
$\dot{M}/\dot{M}_{\rm Edd}$ 6 $\approx $0.9 $\approx $0.1
$\Omega/2\pi$ $0.27\pm0.07$ $\la$0.1
EW 7, eV $48\pm 10$ $147\pm 17$
$L_{\rm BL}/L_{\rm tot}$, 3-20 keV 47% 57%
1 Observed. 2 Absorption corrected; 3 Calculated from the total unabsorbed luminosity using the accretion efficiency for the neutron star spin frequency of $\nu_{\rm NS}=500$ Hz (Sibgatullin & Sunyaev 2000, see Sect. 5.2, Eq. (10)). 4 The details of spectral modeling are given in Sect. 5.3. 5 Fixed at fudicial value. 6 Assuming $\dot{M}_{\rm Edd}=2\times 10^{38}/c^2\eta_{\rm disk}
\approx 3.5\times 10^{18}$ g/s, where $\eta_{\rm disk}=0.066$ - accretion disk efficiency for $\nu_{\rm NS}=500$ Hz and $M_{\rm NS}=1.4~M_{\odot}$. 7 - Line energy and width were fixed at $E_{\rm line}=6.7$ keV and $\sigma_{\rm line}=0.5$ keV.

Source LaTeX | All tables | In the text