Contents

A&A 410, 337-341 (2003)
DOI: 10.1051/0004-6361:20030959

Astrometry from mutual events of Jovian satellites in 1997[*]

R. Vasundhara1 - J.-E. Arlot2 - V. Lainey2 - W. Thuillot2


1 - Indian Institute of Astrophysics, Bangalore, India
2 - Institut de mécanique céleste et de calcul des éphémérides - Observatoire de Paris, UMR 8028 CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France

Received 5 February 2003 / Accepted 16 April 2003

Abstract
Astrometric results of observations of the mutual events of the Galilean satellites of Jupiter of the PHEMU97 campaign by the Institut de Mécanique Céleste et de Calcul des Éphémérides are presented. These astrometric positions can be directly utilized in the construction of future ephemerides. We attempt here to compare the residuals of the relative astrometric positions of satellites with respect to the E3, G5, E5 and L1 ephemerides. The model to fit the observed light curves includes the intensity variations on the surface of satellites using the mosaics constructed by the teams at the US Geological Survey from Voyager and Galileo imagery.

Key words: occultations - eclipses - planets and satellites: general - astrometry - ephemerides

1 Introduction

The four major satellites of Jupiter occult and eclipse each other twice during the orbital period of Jupiter of about 11.6 yrs. The astrometric results of mutual events are capable of yielding accuracies of the order of $0\hbox{$.\!\!^{\prime\prime}$ }03$. This data set therefore has great potential in studies of secular variations in mean motion of the satellites. Of utmost importance is the evaluation of $\dot{n}_1/n_1$ (Aksnes & Franklin 2001; de Sitter 1928; Goldstein & Jacobs 1986; Goldstein & Jacobs 1995; Greenberg et al. 1986; Lieske 1998; Vasundhara et al. 1996). Addition of the mutual event data of the 1997 apparition to the earlier series of 1973, 1979, 1985 and 1991 apparitions will extend the existing time base of these data sets from 18 yrs (1973-1991) to 24 yrs. Such a data set will be helpful to re-investigate the secular variation of the mean motion of these satellites. We present here the astrometric positions derived by fitting the mutual event light curves collected during the observational campaign PHEMU97. These may be directly utilized for further upgrading the ephemerides.

2 Observations

The observations of the mutual events were made in 1997, taking opportunity of the transit of the Sun and the Earth through the equatorial plane of Jupiter. At that time, a large number of mutual occultations and eclipses occurred. These observations were carried out photometrically to obtain the light curves to determine the magnitude drop during the events. Each observation has been carefully referred to UTC, allowing astrometric use. Since the events occurred at specific dates, we organized a worldwide campaign of observations allowing to record 275 light curves for 148 events from 42 sites. All these data will be published in a catalogue and are available at the website of the Institut de Mécanique Céleste et de Calcul des Éphémérides[*]. In the past, we used these observations only to evaluate the shift of the dynamical model. However, a photometric analysis made for astrometric purposes will provide results of high interest.

3 Photometric astrometry

The light curves were fitted using the model presented in Vasundhara (1994). Hapke's photometric function with corrections for macroscopic roughness (Hapke 1984) was used to describe the limb darkening on the satellites for the occultation events. The values of the Hapke's parameters were adopted from McEwen et al. (1988) for Io and from Domingue & Verbiscer (1997) for the other satellites. For the eclipse events, the gradient of the penumbral intensity may play a more dominant role in determining the shape of the light curves than the variations in limb darkening due to surface roughness. These light curves were therefore modeled assuming a smooth photometric function (Hapke 1981) to evaluate the limb darkening. The intensity variations on the surface of the satellites were taken into account by using the mosaics of the satellites constructed using Voyager and Galileo imagery made by various groups. The mosaics of Io at 5 km/pixel through green and near infrared filters (NIR) were constructed by Geissler et al. (1999) using images obtained by Galileo's Solid State Imaging System (SSI) at lowest phase angles ranging from $0\hbox{$.\!\!^\circ$ }5$ to $13 \hbox{$.\!\!^\circ$ }9$. A simple Lunar-Lambert phase dependent photometric function from McEwen (1991) was used to account for limb darkening. The medium phase angle images ( $4 \hbox{$.\!\!^\circ$ }1{-}4 \hbox{$.\!\!^\circ$ }9$) were directly mosaicked while the low phase angle ( $0\hbox{$.\!\!^\circ$ }5$) and higher phase angle ( $13 \hbox{$.\!\!^\circ$ }9$) images were corrected to account for variation with phase angle by these authors. For Europa, the mosaic constructed by the United States Geological Survey (USGS) team using Voyager 1 & 2 and Galileo images was used. Their image processing included corrections for limb darkening using modified Hapke function and normalizing brightness variations due to differences in Sun angle and viewing geometry (Phillips et al. 1997). Considering the lower contrast of features on Europa, a lower resolution of 8 km/pixel was considered adequate. The mosaics of Ganymede (at 2 km/pixel) and Callisto (at 4 km/pixel) constructed by the USGS team were down loaded from the website of the United States Geological Survey, Astrogeology Program, Flagstaff, Arizona[*]. The construction of the mosaics as described by Becker et al. (1999) involved radiometric calibration, photometric normalization by applying the Lunar-Lambert values that were derived from empirical fits to Hapke's functions (McEwen 1991). All these mosaics are thus well calibrated and ideally suited for modeling low phase angle ground based observations as in the present case.

The impact parameter and the time difference between the observation and the prediction were derived as free parameters by fitting the observed light curves to the model using "Grid Search'' technique (Bevington 1969). In case of occultations and also for eclipse events close to opposition the two satellites are very close in the aperture for photometry using photoelectric photometry as well as aperture photometry of CCD data. Ideally, the contribution of the two satellites should be measured just before/after the event. This was not carried out in the majority of the cases. Hence the contribution "r'' of the eclipsing/occulting satellite to the total flux

r=IS1/(IS1+IS2) (1)

was determined as a third parameter, where IS1 and IS2 are the sky subtracted flux measurements of the eclipsing/occulting satellite and eclipsed/occulted satellites respectively. The fitted parameter "r'' (Eq. (1)) should in principle absorb the uncertainty in the sky measurements. The solutions converged within 6-8 iterations for the good quality light curves. The impact parameter "IP'' and "r'' both influence the depth of the light curve. The former also influences the duration of the light curve. As the relative velocity between the two satellites for occultations and the velocity of the eclipsed satellite relative to the shadow center for eclipses can be determined accurately from theory, "IP'' and hence "r'' are determined without ambiguity except in case of very noisy light curves. As the model takes into account the shift in the light center on the satellite from the geometric center due to intensity variations on the surface of the satellite due to phase effects (Aksnes et al. 1986), the fitted time shift is a direct measure of the delay/advance in longitude at the time of geometric conjunction as compared to predictions using the E3 (Lieske 1987). The time

\begin{displaymath}T_{\rm g}^{\rm Fit}$ $ =$ $ T_{\rm g}^{\rm Pred} - \Delta X/v
\end{displaymath} (2)

gives the fitted time of close approach of the geometric centers of the two satellites for occultations and the time of close approach of the eclipsed satellite to the shadow center for eclipses, where v is the velocity of the occulted (eclipsed) satellite relative to the occulting (eclipsing) satellite. The fitted $\Delta X$ in the above equation represents the shift of the computed curve along the time axis required to fit the observations. The fitted astrometric results for different sets of events are given in Table 1. The date of the event is given in Col. 1. Following the normal practice of designating the events, the code 1E2 indicates that Io eclipses Europa. Similarly, 1O2 denotes the occultation of Europa by Io. The derived value of $T_{\rm g}^{\rm Fit}$, fitted impact parameter, IP and $\Delta X$ are given in Cols. 2-4 respectively. The (O-C) in the impact parameter is given in Col. 5. The differential sky plane coordinates $\Delta \alpha \cos {\delta} $ and $\Delta \delta $of J2000 epoch, in the sense (S2-S1) in arcsec are given in Cols. 6 and 7 respectively. The orbital longitudes $\phi 1$ and $\phi 2$ of the occulting/eclipsing and occulted/eclipsed satellites, geocentric for occultations and heliocentric for eclipses are given in Cols. 8 and 9 respectively. The site of observations are given in the last column.


  \begin{figure}
\par\includegraphics[width=11cm,clip]{ranw.ps}
\end{figure} Figure 1: O-C in $(\Delta $ RA $\cos(\delta))$ with respect to E3, G5, E5 and L1 respectively. Smaller points indicate eclipses and the larger ones occultations.


  \begin{figure}
\par\includegraphics[width=10.2cm,clip]{decnw.ps}
\end{figure} Figure 2: O-C in $\Delta \delta $ with respect to E3, G5, E5 and L1. Smaller points indicate eclipses and the larger ones occultations.


  \begin{figure}
\mbox{\includegraphics[width=6cm,clip]{geo1.ps}\hspace{4mm}
\incl...
....ps}\hspace{25mm}
\includegraphics[width=4cm,clip]{labelfig3.ps} }\end{figure} Figure 3: Satellite positions at the time of events involving different pairs of satellites during the mutual event series of 1997.

4 Comparison with theory

The (O-C) in differential coordinates $\Delta \alpha \cos {\delta} $ and $\Delta \delta $of the pairs of satellites are plotted in Figs. 1 and 2 respectively with respect to E3, G5, E5 and L1 (see references below). The symbols used for the different events are as follows: 1E2: open triangles, 1O3/1E3: stars, 1E4: open stars. 2E1: filled triangles, 2O3: open circles, 3O1/3E1: crosses, 3O2/3E2: filled circles, 3O4/3E4: open hexagons, 4O1/4E1: filled hexagons, 4O2/4E2: open squares and 4O3/4E3: filled squares. Due to differences in the data sets that went into generation of these ephemerides, it is of interest to look for existence of general trends if any, in the residuals. For instance, Lieske progressively updated Sampson's (1921) theory starting from E1 (Lieske 1977) using the eclipse data of 1878-1903 to generate E2 (Lieske 1980) by adding visual eclipses between 1903 and 1972, photographic data between 1967 and 1978, and mutual events of 1973. The E3 (Lieske 1987) ephemerides was derived by further mutual event pairs from 1979, 183 pairs of data from Voyager optical navigation images and 15 711 classical eclipses from 1652-1983. Arlot (1982) used 8856 individual photographic observations between 1891 to 1978 to derive the G5 ephemeris. The E5 sets of constants were derived by Lieske by adding to the data set the mutual event astrometric positions of 1985 and 1991, recent photographic observations from Pascu (1994) covering 1980-1991 and Jovian eclipse timings. Lainey (2002) used all the observations used in the construction of G5, 200 photographic positions by Pascu (1994) made during the years 1986 to 1990, astrometric positions of the 1985 and 1991 mutual event series, and 200 CCD observations from Flagstaff (Stone & Harris 2000; Stone 2001) to construct the first version of the ephemerides L1. Thus, a comparison of E3 with E5 will help to investigate the influence of mutual events in the construction of new ephemerides and the ability of the dynamical model to fit all the data. The ephemeride G5 was generated using only photographic data, hence its comparison with E3 and G5 will be interesting to see how the eclipse timings and the mutual event data have influenced E3 and E5.

5 Interpretations and conclusions

Unlike the mutual events of the 1991 series which were predominant in the 2O1/2E1 events, the present series provided a good opportunity to record events between different pairs of satellites. The longitude of the satellites at the time of the events are shown in Fig. 3. The same symbols are used for different events as used in Figs. 1 and 2. The mean and rms of the residuals in the relative right ascensions and declinations are given in Table 2. The rms of the residuals with respect to the four ephemerides are very nearly the same for different pairs of satellites . The light curves were also fitted without considering the intensity variations due to surface features (model-WOIV). The rms residuals of the fits using this model are marginally larger compared to the corresponding values derived using the model-WIV by $ \sim$ $ 0 \hbox{$.\!\!^{\prime\prime}$ }01$ i.e. $ \sim$35 km. This is much lower than the rms of the residuals which are in the range $ 0 \hbox{$.\!\!^{\prime\prime}$ }05{-}0 \hbox{$.\!\!^{\prime\prime}$ }07$. It may be noted that the light curves were obtained by a diverse section of observers and instruments, errors in the observed depths of the light curves are transmitted in the determination of the impact parameters. Although as mentioned in Sect. 3, the parameter "r'' was derived as a free parameter to take into account these uncertainties, fits using the model-WIV will help in better constraining this parameter and the impact parameter compared to the fits using the model-WOIV because the former takes into advantage the subtle asymmetries in the light curves due to surface features. The full potential of this model can best be realized with high quality light curves, as the genuine asymmetries may otherwise be lost in noise.

Interesting trends in the residuals of the relative right ascensions between different pairs of satellites compared to the ephemerides E3, G5, E5 and L1 (Sect. 4) are noticed. The events involving J4 are delayed by $ 0\hbox{$.\!\!^{\prime\prime}$ }1048$ compared to E3. Lowest residuals are obtained with respect to G5 both in right ascension and declination. Thus J4 related events appear to be best represented by G5 and closely followed by L1.

As shown in Figs. 1 and 2, O-C in RA and Dec with respect to these four ephemerides for the occultation and eclipse events between Io and Ganymede (1O3/1E3 and 3O1/3E1) do not differ significantly. On the other hand, significant differences are noticed for the eclipse events between Io and Europa (1E2 and 2E1) These are more for the former type of events, which occurred when Io was closer to western elongation and hence the timings of the events are more susceptible to the constants of Europa (Fig. 3).

In any given mutual event series, as the inter-combination of events is limited, inclusion of data sets of several apparitions will help to simultaneously improve the constants of motions of these satellites. The astrometric positions presented in the present work will therefore substantially increase the mutual event data set. Improvements in the residuals by including the intensity variations on the surface of the satellites in the fit to the light curves has been demonstrated in the present investigation. A re-analysis of all the mutual event light curves of the previous series using this model will help in removing systematic shifts in the relative right ascensions of a given satellite pair, which otherwise might be misinterpreted as real longitude residuals.

Acknowledgements
This work has been made possible thanks to all the observatories where observations were made and has been supported by CNRS and PNP (Programme National de Planétologie).

References

  
6 Online Material


 

 
Table 1: Astrometric results of the 1997 events.

DATE
$T_{\rm g}^{\rm Fit}$ $\Delta X$ ${\it IP}^{\rm Fit}$ $({\rm O}{-}{\rm C}){\it IP}$ $\Delta \alpha \cos (\delta)$ $\Delta \delta $ $\phi 1$ $\phi 2$ PLACE
  UT km km km arcsec arcsec Deg Deg  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1E2 events
 
29 May 1997 01 10 00.8 -404.4 -650 -81.1 0.0539 -0.1679 226.4 332.7 Boskoop
29 May 1997 01 10 58.1 -1787.0 203 772.2 -0.0176 0.0521 226.4 332.7 Lumezzane*
29 May 1997 01 10 03.2 -464.4 -537 33.3 0.0436 -0.1390 226.4 332.7 Munich
22 June 1997 21 5 47.4 -343.8 1649 17.0 -0.1439 0.4242 237.1 327.9 Alma-Ata
29 June 1997 23 23 30.1 -228.0 2172 -42.0 -0.1928 0.5578 240.4 326.7 Bucharest(S)
29 June 1997 23 23 33.7 -298.7 2200 -13.7 -0.1937 0.5655 240.4 326.7 Bucharest(V)
29 June 1997 23 23 14.5 84.2 2210 -3.4 -0.1936 0.5685 240.4 326.7 Stuttgart
07 July 1997 01 42 32.9 -400.1 2797 27.6 -0.2486 0.7186 243.8 325.5 Bordeau
07 July 1997 01 42 20.5 -165.9 2772 2.4 -0.2464 0.7121 243.8 325.5 Lisbon
07 July 1997 01 42 25.6 -261.7 2825 55.3 -0.2511 0.7257 243.8 325.5 San Fernando

1O3 events
 
15 July 1997 18 58 19.5 -209.6 2277 -24.2 -0.2645 0.7110 212.5 347.7 Alma-Ata
29 July 1997 23 49 33.5 131.3 1819 -142.3 -0.2108 0.5798 224.1 344.0 Boskoop
29 July 1997 23 49 44.3 -118.7 1971 11.1 -0.2284 0.6281 224.1 344.0 Bucharest (V)
29 July 1997 23 49 41.6 -55.0 1923 -37.8 -0.2228 0.6130 224.1 344.0 Comthurey
29 July 1997 23 50 20.6 -945.1 1802 -158.8 -0.2092 0.5744 224.1 344.0 Reux
06 Aug. 1997 02 17 55.7 -640.6 1517 -89.7 -0.1742 0.4860 230.2 342.2 Grasse (B)
06 Aug. 1997 02 17 51.7 -554.5 1430 -175.9 -0.1643 0.4584 230.2 342.2 Grasse (V)
06 Aug. 1997 02 17 29.0 -68.1 1428 -179.0 -0.1640 0.4575 230.2 342.2 Munich
06 Aug. 1997 02 17 36.7 -229.7 1678 72.7 -0.1926 0.5380 230.2 342.2 Teide (T150, K)
10 Sep. 1997 16 17 37.2 -95.6 -868 -93.9 0.0912 -0.2704 274.8 336.8 Alma-Ata
10 Sep. 1997 16 17 31.5 -54.1 -8 769.6 0.0008 -0.0024 274.8 336.8 Funaho
10 Sep. 1997 16 17 33.9 -74.5 -848 -70.4 0.0875 -0.2647 274.8 336.8 Okayama
11 Sep. 1997 00 31 38.4 -66.9 -2002 31.3 0.2140 -0.6217 345.1 354.2 Bordeaux
11 Sep. 1997 00 33 28.7 592.1 -1685 349.1 0.1801 -0.5234 345.1 354.2 Catania
11 Sep. 1997 14 08 09.0 152.1 -2416 288.4 0.2540 -0.7515 101.1 22.9 Funaho
11 Sep. 1997 14 09 31.5 -945.8 -2738 -33.0 0.2873 -0.8517 101.1 22.9 Okayama
25 Sep. 1997 19 54 23.8 44.2 -2564 792.5 0.2562 -0.7716 119.4 20.2 Boskoop
25 Sep. 1997 19 54 37.7 -214.4 -3273 84.7 0.3269 -0.9847 119.4 20.2 Meudon
25 Sep. 1997 19 54 42.6 -306.4 -3359 -1.7 0.3356 -1.0107 119.4 20.2 Munich
25 Sep. 1997 19 54 29.8 -66.7 -3782 -424.6 0.3778 -1.1379 119.4 20.2 Paris
02 Oct. 1997 22 40 36.6 -451.8 -2615 1019.7 0.2548 -0.7714 127.3 18.4 Bordeaux

1E3 events
 
27 Aug. 1997 11 29 33.1 -32.1 -1360 -324.0 0.1262 -0.3486 260.1 337.1 Funaho
27 Aug. 1997 11 29 34.5 -51.2 -1049 -14.1 0.0974 -0.2690 260.1 337.1 Okayama
28 Aug. 1997 00 36 18.0 164.5 -2752 -76.5 0.2609 -0.7030 11.7 4.6 Catania
28 Aug. 1997 00 35 53.2 10.8 -2641 34.5 0.2505 -0.6746 11.7 4.6 Teide (T150, K)
03 Sep. 1997 15 26 14.0 4.7 -827 -203.8 0.0778 -0.2118 277.3 336.9 Alma-Ata
04 Sep. 1997 13 13 27.1 -147.4 -2096 -53.2 0.1998 -0.5358 102.8 22.7 Okayama
11 Sep. 1997 16 30 22.5 -13.2 -1324 -142.6 0.1263 -0.3387 114.4 21.1 Vainu Bappu Obs.
18 Sep. 1997 19 34 51.4 22.0 290 547.7 -0.0507 0.0609 124.1 19.2 Bucharest
18 Sep. 1997 19 34 55.6 -55.6 -154 96.3 0.0159 -0.0391 124.1 19.2 Boskoop
18 Sep. 1997 19 34 53.4 -10.4 -350 -96.0 0.0797 -0.0530 124.1 19.2 Bordeaux
18 Sep. 1997 19 34 58.5 -114.6 -172 75.6 0.0170 -0.0439 124.1 19.2 Lisbon
18 Sep. 1997 19 34 57.9 -104.3 -311 -63.7 0.0297 -0.0797 124.1 19.2 Grasse (B)
18 Sep. 1997 19 35 1.6 -177.3 -172 75.6 0.0164 -0.0440 124.1 19.2 Grasse (V)
18 Sep. 1997 19 34 59.1 -129.9 -18 229.0 0.0016 -0.0047 124.1 19.2 Grasse (R)
18 Sep. 1997 19 34 57.4 -94.8 -163 85.6 0.0156 -0.0418 124.1 19.2 Reux
18 Sep. 1997 19 35 00.6 -156.2 -645 -397.2 0.0641 -0.1640 124.1 19.2 Naucshny
18 Sep. 1997 19 34 54.8 -38.3 -155 98.4 0.0355 -0.0231 124.1 19.2 Torino
25 Sep. 1997 22 32 42.7 -150.9 639 -113.0 -0.0598 0.1641 132.8 16.9 Bordeaux
25 Sep. 1997 22 32 34.5 27.5 769 18.5 -0.0768 0.1956 132.8 16.9 Reux
25 Sep. 1997 22 32 41.5 -126.3 622 -128.2 -0.0601 0.1589 132.8 16.9 Ukkel
25 Sep. 1997 22 32 37.9 -45.7 916 166.0 -0.0881 0.2343 132.8 16.9 Boskoop
25 Sep. 1997 22 32 28.7 157.2 1076 326.6 -0.1046 0.2749 132.8 16.9 Wilp-Achterhoek
25 Sep. 1997 22 32 37.8 -44.3 957 207.0 -0.0931 0.2443 132.8 16.9 Heisingen
25 Sep. 1997 22 32 34.0 40.2 766 16.2 -0.0752 0.1953 132.8 16.9 Grasse (B)
25 Sep. 1997 22 32 31.7 92.1 546 -203.8 -0.0531 0.1394 132.8 16.9 Grasse (V)
25 Sep. 1997 22 32 42.9 -156.6 592 -157.5 -0.0575 0.1513 132.8 16.9 Grasse (R)
25 Sep. 1997 22 32 41.0 -116.1 729 -20.5 -0.0715 0.1860 132.8 16.9 Munich
25 Sep. 1997 22 32 36.7 -19.2 750 -0.8 -0.0734 0.1914 132.8 16.9 Obs. Haute Provence
25 Sep. 1997 22 32 38.1 -51.7 633 -117.2 -0.0618 0.1614 132.8 16.9 Paris
25 Sep. 1997 22 32 51.6 -348.9 738 -11.9 -0.0719 0.1884 132.8 16.9 Pic-du-Midi
25 Sep. 1997 22 32 39.0 -69.9 563 -188.0 -0.0545 0.1437 132.8 16.9 Prague
25 Sep. 1997 22 32 36.9 -30.1 787 30.7 -0.0822 0.1986 132.8 16.9 Stuttgart
03 Oct. 1997 01 25 24.1 -52.6 1792 8.3 -0.1769 0.4568 140.8 14.5 Bowie
03 Oct. 1997 01 25 25.0 -74.1 1833 48.9 -0.1800 0.4675 140.8 14.5 New-York
1E4 events  
24 July 1997 18 21 10.1 -105.1 -64 -292.2 0.0045 -0.0168 242.8 348.4 Alma-Ata
25 July 1997 20 51 33.2 -31.2 -2123 -38.7 0.1896 -0.5458 108.2 12.4 Alma-Ata
25 July 1997 20 52 1.7 -413.3 -2175 -90.3 0.1942 -0.5590 108.2 12.4 Naucshny
28 Aug. 1997 02 52 37.8 -147.8 3245 27.3 -0.3081 0.8290 31.2 6.7 Teide (T150, K)
2E1 events  
18 June 1997 01 04 44.8 -264.6 18 286.7 -0.0016 0.0046 196.4 333.4 Bordeaux
18 June 1997 01 04 43.8 -238.9 67 330.2 -0.0056 0.0174 196.4 333.3 Catania
18 June 1997 01 04 34.1 41.9 -356 -91.3 0.0315 -0.0913 196.4 333.4 Grasse (B)
18 June 1997 01 04 40.3 -134.8 -491 -227.1 0.0428 -0.1263 196.4 333.4 Grasse (V)
18 June 1997 01 04 29.9 162.2 16 279.8 -0.0013 0.0042 196.4 333.3 Grasse (R)
18 June 1997 01 04 45.6 -285.9 -447 -181.3 0.0416 -0.1141 196.5 333.4 Prague
25 June 1997 03 17 07.3 -192.3 -5 -321.9 0.0005 -0.0013 194.9 335.9 Lisbon
28 June 1997 16 23 16.5 -176.0 670 50.1 -0.0623 0.1713 194.1 337.3 Ellinbank
19 July 1997 22 59 41.4 145.5 2492 5.8 -0.2223 0.6409 189.4 345.1 Bordeaux
2O3 events  
13 May 1997 02 23 50.7 -428.6 1042 119.7 -0.1033 0.2709 143.7 22.0 Ragusa
16 Oct. 1997 17 36 47.4 -572.4 1595 -113.5 -0.1485 0.4516 192.8 352.0 Torino
3O1 events  
15 May 1997 20 59 54.5 355.9 -2520 37.0 0.2509 -0.6616 161.3 54.9 Vainu Bappu Obs.
30 May 1997 03 05 19.2 104.2 -164 550.2 0.0171 -0.0451 157.8 75.0 Bordeaux
30 May 1997 03 05 26.7 -5.3 -995 -280.7 0.1040 -0.2734 157.8 75.0 Paris
30 May 1997 03 05 36.5 -149.4 -1563 -848.3 0.1614 -0.4302 157.8 75.0 Torino
31 May 1997 00 30 37.2 38.7 -2401 52.6 0.2552 -0.6603 202.6 256.5 Munich
31 May 1997 00 30 08.0 214.1 -2572 -118.3 0.2733 -0.7073 202.6 256.5 Stuttgart
05 July 1997 16 00 58.9 144.9 1170 351.7 -0.1345 0.3578 197.2 311.1 Ellinbank
07 June 1997 04 32 33.4 227.9 -1749 -86.3 0.2044 -0.4864 203.2 275.0 Teide
19 July 1997 20 59 16.8 152.5 1112 -121.1 -0.1304 0.3499 193.4 323.6 Alma-Ata
26 July 1997 23 23 19.2 47.4 1431 226.3 -0.1681 0.4544 191.5 329.3 San Fernando
03 Aug. 1997 01 44 51.9 310.9 826 -196.5 -0.0962 0.2643 189.6 334.7 Boskoop
10 Aug. 1997 04 05 28.5 124.9 508 -198.1 -0.0598 0.1625 187.7 340.0 Teide (T150, K)
03 Nov. 1997 10 27 30.7 44.6 -2276 -60.9 0.2043 -0.6078 161.5 54.0 Funaho
03 Nov. 1997 10 27 32.3 11.1 -2298 -83.1 0.2063 -0.6138 161.5 54.0 Okayama
05 Oct. 1997 23 25 59.6 138.0 -2643 15.2 0.2553 -0.7739 170.8 24.3 ESO-T220
24 Nov. 1997 20 32 09.0 110.1 -1400 -347.6 0.1157 -0.3511 156.8 89.6 Teide T80
24 Nov. 1997 20 32 06.1 140.6 -946 106.3 0.0826 -0.2356 156.8 89.7 Teide (T150, K)
25 Nov. 1997 18 39 29.7 -19.4 -2940 -52.5 0.2575 -0.7301 202.9 276.6 Ukkel

3E1 events
 
21 Sep. 1997 20 31 10.0 16.9 1624 64.0 -0.1566 0.4156 171.5 22.2 Boskoop
21 Sep. 1997 20 31 05.5 132.6 1647 78.0 -0.1610 0.4207 171.5 22.2 Bucharest (S)
21 Sep. 1997 20 31 06.5 111.0 1579 19.0 -0.1527 0.4039 171.5 22.2 Bucharest (V)
21 Sep. 1997 20 31 06.5 114.8 1573 -38.3 -0.1456 0.4047 171.5 22.2 Caceres
21 Sep. 1997 20 31 07.2 90.6 1534 -27.9 -0.1511 0.3912 171.5 22.2 Chateaugiron
21 Sep. 1997 20 31 13.2 -70.9 1698 138.1 -0.1642 0.4343 171.5 22.2 Lisbon
21 Sep. 1997 20 30 59.3 302.2 1880 319.5 -0.1818 0.4807 171.5 22.2 Grasse (V)
21 Sep. 1997 20 31 01.2 253.5 1648 88.1 -0.1593 0.4216 171.5 22.2 Grasse (R)
21 Sep. 1997 20 31 03.9 178.8 1515 -45.0 -0.1460 0.3877 171.5 22.2 Lisbon
21 Sep. 1997 20 31 05.3 140.9 1586 26.2 -0.1535 0.4057 171.5 22.2 Meudon
21 Sep. 1997 20 31 11.0 -10.1 1565 4.5 -0.1513 0.4002 171.5 22.2 Munich
21 Sep. 1997 20 31 07.4 84.7 1483 -76.8 -0.1442 0.3791 171.5 22.2 Oostduinkerke
21 Sep. 1997 20 31 06.2 118.2 1945 384.6 -0.1881 0.4974 171.5 22.2 Pic-du-Midi
21 Sep. 1997 20 31 12.9 -62.1 1604 43.8 -0.1552 0.4102 171.5 22.2 Prague
21 Sep. 1997 20 31 08.4 59.4 1544 -15.7 -0.1488 0.3952 171.5 22.2 Reux
21 Sep. 1997 20 34 12.3 -4881.4 451 -1110.6 -0.0436 0.1153 171.5 22.2 Stuttgart*
21 Sep. 1997 20 31 08.0 70.2 1985 425.3 -0.1919 0.5078 171.5 22.2 Ukkel
21 Sep. 1997 20 31 05.8 125.2 1509 -53.4 -0.1496 0.3847 171.5 22.2 Wilp-Achterhoek
21 Sep. 1997 20 31 08.0 67.7 1522 -43.1 -0.1489 0.3885 171.5 22.2 Zaragoza
28 Sep. 1997 23 18 07.3 -1075.5 2115 -294.6 -0.2061 0.5407 168.9 29.4 Catania*
28 Sep. 1997 23 17 22.1 92.5 2373 -35.7 -0.2309 0.6067 168.9 29.5 Pic-du-midi
18 Nov. 1997 19 18 35.7 -711.8 5078 25.8 -0.5306 1.2882 201.9 287.7 Catania*
3O2 events  
29 May 1997 23 07 13.8 -104.1 1562 135.8 -0.1602 0.4301 149.5 53.6 Vainu Bappu Obs.
06 June 1997 02 19 18.3 -350.4 1708 -228.6 -0.1801 0.4810 148.3 56.5 Bordeaux
06 June 1997 02 19 20.8 -358.4 2132 161.4 -0.2466 0.5916 148.3 56.5 Teide
18 July 1997 20 47 57.6 52.3 1823 -42.4 -0.2060 0.5750 142.8 74.0 Alma-Ata
18 July 1997 20 48 47.1 -559.3 1775 -91.3 -0.2003 0.5599 142.8 74.0 Torino
04 July 1997 14 43 31.2 72.8 2403 -35.3 -0.2697 0.7352 144.3 68.0 Okayama
25 July 1997 23 50 08.7 24.0 1541 125.3 -0.1733 0.4915 142.2 77.2 Boskoop
25 July 1997 23 50 08.9 24.7 1627 212.1 -0.1832 0.5190 142.2 77.2 Losbon
25 July 1997 23 50 26.4 -179.3 1420 4.6 -0.1599 0.4528 142.2 77.2 Lumezzane
25 July 1997 23 50 08.7 21.4 1552 138.1 -0.1749 0.4949 142.2 77.2 Naucshny
25 July 1997 23 50 16.3 -60.8 1462 46.9 -0.1647 0.4662 142.2 77.2 San Fernanho
02 Aug. 1997 02 53 10.6 90.9 613 -256.7 -0.0683 0.1971 141.7 80.5 Catania
02 Aug. 1997 02 53 13.8 57.4 590 -281.0 -0.0656 0.1897 141.7 80.5 Grasse B
02 Aug. 1997 02 53 09.6 102.7 701 -170.4 -0.0781 0.2252 141.7 80.5 Gragge (V)
02 Aug. 1997 02 53 09.0 110.9 1039 168.6 -0.1159 0.3340 141.7 80.5 Teide (T150, K)
23 Aug. 1997 12 29 47.5 152.6 -852 365.8 0.0897 -0.2743 141.3 92.6 Okayama
30 Aug. 1997 16 03 31.4 73.7 -2233 -153.3 0.2279 -0.7144 141.8 98.1 Alma-Ata
29 Sep. 1997 18 42 07.3 240.7 -1608 126.2 0.1618 -0.4779 218.7 274.5 Bucharest (S)
29 Sep. 1997 18 42 37.3 -42.2 -1452 281.7 0.1484 -0.4309 218.7 274.6 Bucharest (V)
29 Sep. 1997 18 42 32.8 2.8 -2109 -375.6 0.2151 -0.6258 218.7 274.6 Catania
29 Sep. 1997 18 41 58.8 324.7 -1909 -176.2 0.1972 -0.5659 218.7 274.6 Chateaugiron
29 Sep. 1997 18 42 16.4 156.3 25 1758.5 -0.0025 0.0075 218.7 274.5 Meudon
29 Sep. 1997 18 42 51.7 -175.7 -1487 246.5 0.1517 -0.4413 218.7 274.6 Obs. Haute Provence
29 Sep. 1997 18 43 06.0 -310.6 -2075 -342.2 0.2117 -0.6160 218.7 274.6 Pic-du-Midi
29 Sep. 1997 18 42 33.8 -6.9 -1848 -115.3 0.1885 -0.5486 218.7 274.5 Ukkel
06 Oct. 1997 22 12 40.8 21.6 -1370 161.8 0.1348 -0.3988 218.4 279.0 Teide T80
11 Nov. 1997 15 38 23.8 -54.6 643 173.5 -0.0579 0.1667 213.9 297.8 Vainu Bappu Obs.

3E2 events
 
18 July 1997 18 56 55.9 -79.0 -3395 -8.4 0.2954 -0.8761 143.5 70.9 Alma-Ata
18 July 1997 18 56 49.2 7.8 -3417 -30.0 0.2973 -0.8816 143.5 70.9 Vainu Bappu Obs.
25 July 1997 22 31 58.6 -69.1 -3097 6.3 0.2711 -0.7989 142.6 74.9 Alma-Ata
25 July 1997 22 31 53.6 -10.1 -3072 31.9 0.2696 -0.7921 142.6 74.9 Bucharest (V)
25 July 1997 22 31 56.0 -38.2 -2914 189.7 0.2551 -0.7516 142.6 74.9 Catania
25 July 1997 22 31 55.5 -31.5 -3178 -74.9 0.2781 -0.8199 142.6 74.9 Lisbon
30 Aug. 1997 18 44 49.9 255.5 -3810 -24.3 0.3341 -0.9851 143.0 105.0 Alma-Ata
30 Aug. 1997 18 45 49.0 -38.5 -3816 -29.9 0.3347 -0.9865 143.0 105.0 Obs. Haute Provence
08 Sep. 1997 11 04 13.0 47.8 -468 -64.1 0.0466 -0.1190 218.7 266.2 Funaho
08 Sep. 1997 11 04 15.6 28.8 386 790.2 -0.0385 0.0983 218.7 266.2 Okayama*
15 Sep. 1997 15 09 38.3 16.2 551 -352.2 -0.0557 0.1399 218.8 272.4 Alma-Ata
22 Sep. 1997 19 02 11.0 -45.0 2144 -12.7 -0.2147 0.5454 218.5 277.6 Bordeaux
22 Sep. 1997 19 02 04.8 18.1 2219 62.2 -0.2222 0.5644 218.5 277.6 Boskoop
22 Sep. 1997 19 02 11.4 -49.0 2149 -8.2 -0.2152 0.5465 218.5 277.6 Bucharest (S)
22 Sep. 1997 19 02 14.5 -81.3 2129 -28.0 -0.2131 0.5415 218.5 277.6 Bucharest (V)
22 Sep. 1997 19 02 10.1 -36.0 2116 -41.1 -0.2120 0.5381 218.5 277.6 Chateaugiron
22 Sep. 1997 19 02 10.3 -37.8 2183 26.3 -0.2187 0.5553 218.5 277.6 Meudon
22 Sep. 1997 19 02 11.9 -54.3 2184 27.4 -0.2187 0.5556 218.5 277.6 Munich
22 Sep. 1997 19 02 16.6 -102.9 2082 -74.4 -0.2087 0.5296 218.5 277.6 Prague
22 Sep. 1997 19 02 14.4 -80.3 2120 -37.2 -0.2122 0.5392 218.5 277.6 Reux
22 Sep. 1997 19 02 13.5 -70.2 2142 -14.9 -0.2145 0.5448 218.5 277.6 Ukkel-T85
22 Sep. 1997 19 02 14.9 -85.4 2123 -33.3 -0.2130 0.5400 218.5 277.6 Vainu Bappu Obs.
22 Sep. 1997 19 02 00.9 58.7 2102 -55.0 -0.2102 0.5348 218.5 277.6 Wilp-Achteroek
22 Sep. 1997 19 02 10.6 -40.9 2163 6.7 -0.2167 0.5503 218.5 277.6 Zaragoza
22 Sep. 1997 19 02 11.0 -45.0 2144 -12.7 -0.2147 0.5454 218.5 277.6 Bordeaux
22 Sep. 1997 19 02 11.9 -54.3 2184 27.4 -0.2187 0.5556 218.5 277.6 Munich
29 Sep. 1997 22 46 41.2 -77.2 3412 20.2 -0.3429 0.8678 217.9 282.3 Pic-du-Midi
3O4 events  
21 May 1997 08 44 49.2 -418.7 1851 137.3 -0.1835 0.4952 77.3 34.0 Asheville
3E4 events  
06 July 1997 22 32 26.2 -226.0 -2247 -241.1 0.2057 -0.5749 267.9 325.2 Catania (S)
06 July 1997 22 32 57.8 -452.6 -1931 70.4 0.1715 -0.4959 267.9 325.2 Torino
26 July 1997 01 53 33.3 -931.0 -5544 -206.1 0.4961 -1.4266 149.6 16.9 Catania*
10 Aug. 1997 11 16 37.7 80.1 -1430 -255.8 0.1292 -0.3679 202.6 347.3 Ellinbank
4O1 events  
07 Oct. 1997 19 35 14.7 93.6 3254 -379.7 -0.3129 0.9483 172.0 38.7 Naucshny
4E1 events  
03 Aug. 1997 00 05 03.9 -555.8 -567 14.4 0.0519 -0.1456 187.9 321.9 Comthurey
03 Aug. 1997 00 04 50.0 -244.7 15 600.6 -0.0013 0.0038 187.9 321.9 Grasse (B)
03 Aug. 1997 00 04 56.2 -385.2 -799 -213.8 0.0727 -0.2056 187.9 321.9 Grasse (V)
03 Aug. 1997 00 04 57.1 -410.6 -570 29.0 0.0563 -0.1450 187.9 321.9 Grasse (R)
03 Aug. 1997 00 05 02.9 -535.9 -836 -254.0 0.0747 -0.2155 187.9 321.9 Naucshny
03 Aug. 1997 00 04 57.6 -419.1 -306 276.5 0.0280 -0.0787 187.9 321.9 Praha
03 Aug. 1997 00 05 01.4 -501.6 -419 162.5 0.0380 -0.1078 187.9 321.9 Teide (T150, K)
4O2 events  
24 April 1997 03 56 03.6 -783.6 149 58.2 -0.0149 0.0361 170.4 27.9 Bordeaux
24 April 1997 03 56 22.1 -1141.0 -170 -284.2 0.0074 -0.0440 170.4 27.9 Madrid
24 April 1997 03 56 05.2 -814.8 -542 -626.5 0.0442 -0.1354 170.4 27.9 Munich
24 April 1997 03 56 03.0 -775.7 19 -75.2 -0.0022 0.0046 170.4 27.9 Obs. Haute Provence
09 Nov. 1997 16 50 36.8 -706.2 2482 241.2 -0.2069 0.6542 159.7 99.4 Boskoop
4E2 events  
30 June 1997 05 39 47.7 -689.5 -1797 -64.7 0.1572 -0.4636 182.5 353.0 New York
01 Aug. 1997 20 11 49.1 -617.2 3406 -2.9 -0.3050 0.8780 163.2 54.2 Vainu Bappu Obs.
4E2 events  
12 May 1997 02 37 49.1 -432.0 -2754 75.5 0.2680 -0.7163 195.2 332.1 Boskoop
12 May 1997 02 37 57.3 -576.2 -2821 8.9 0.2745 -0.7337 195.2 332.1 Munich
19 Sep. 1997 22 15 05.2 -469.2 4083 104.7 -0.4196 1.2490 145.8 82.9 Bordeaux
19 Sep. 1997 22 14 30.0 -185.4 4406 426.8 -0.4528 1.3477 145.8 82.9 Ukkel
24 Oct. 1997 10 03 24.0 -606.6 -197 152.3 0.0191 -0.0541 169.7 18.5 Funaho
4E3 events  
01 Aug. 1997 00 21 03.7 -447.4 1328 27.1 -0.1226 0.3409 145.5 87.9 Barcelona
01 Aug. 1997 00 20 22.6 -164.7 1009 -290.4 -0.0931 0.2591 145.5 87.9 Catania
01 Aug. 1997 00 20 29.6 -214.3 1453 152.8 -0.1337 0.3730 145.5 87.9 Teide (T150, K)
01 Aug. 1997 00 19 44.6 106.5 1435 135.3 -0.1325 0.3684 145.5 87.9 Lisbon



 

 
Table 2: Residuals.
Ephemerides Mean and rms of the residuals (arcsec) Number Sat.
          of points combinations
  RA Dec   Model
  mean rms res. mean (O-C) rms res.    
(1) (2) (3) (4) (5) (6) (7)
L1 -0.01336 0.05882 0.01638 0.07237 189 All Sat.
E5 -0.00030 0.06764 0.01055 0.07324   WOIV1
G5 -0.00204 0.06647 0.00849 0.07626    
E3 -0.00237 0.07837 0.00965 0.07503    
L1 -0.03470 0.05012 0.00089 0.06360 189 All Sat.
E5 -0.02164 0.05670 -0.00494 0.06363   WIV2
G5 -0.02338 0.05806 -0.00700 0.06660    
E3 -0.02371 0.06724 -0.00584 0.06533    
L1 -0.03286 0.05413 0.00400 0.06825 118 J1 with others
E5 -0.01314 0.05579 -0.00074 0.06815   WIV
G5 -0.00965 0.05908 -0.00079 0.06878    
E3 -0.01553 0.06091 -0.00122 0.06891    
L1 -0.02220 0.04560 -0.00135 0.05263 77 J2 with others
E5 -0.03419 0.05531 -0.01333 0.05365   WIV
G5 -0.04233 0.05059 -0.02045 0.05808    
E3 -0.03178 0.06776 -0.01455 0.05722    
L1 -0.04263 0.04602 -0.00150 0.06451 151 J3 with others
E5 -0.01483 0.05106 -0.00085 0.06344   WIV
G5 -0.02684 0.05401 -0.00533 0.06701    
E3 -0.00881 0.05691 0.00172 0.06340    
L1 -0.03412 0.05797 0.00615 0.06664 32 J4 with others
E5 -0.05495 0.07133 -0.01953 0.06712   WIV
G5 -0.01213 0.07430 -0.00545 0.07300    
E3 -0.10477 0.07505 -0.03761 0.06911    
1 WOIV: Without considering the albedo variations
2 WIV: With albedo variations from Voyager and Galileo imagery




Copyright ESO 2003