Table 6: Best fit parameters to RGS spectra in the 0.5-1.3 keV range recorded in revolutions 107 (upper table) and 200 (lower table) using a three components VMEKAL model. The temperature of each component were frozen to the value derived from the analysis of EPIC data (see Table 5). The metallicity was left free to vary. The oxygen and neon abundances were first tied to the abundance of the other elements (MODEL A). There were then left free to vary independently but with the same value for the different temperature components (MODEL B). In MODEL C, the hottest temperature component has been replaced by a VMEKAL component at $4 \times 10^{6}$ K where the Ne IX line is formed.
Rev.107 Parameter MODEL A MODEL B MODEL C
  $kT_{\rm 1}$ (keV) 0.65 0.65 0.65
  $EM_{\rm 1}$ (1052 cm-3) 57 $\pm$ 17 52 $\pm$ 13 41 $\pm$ 15
  $kT_{\rm 2}$ (keV) 1.38 1.38 1.38
  $EM_{\rm 2}$ (1052 cm-3) 366 $\pm$ 44 342 $\pm$ 41 399 $\pm$ 13
VMEKAL $kT_{\rm 3}$ (keV) 3.7 3.7 0.34
  $EM_{\rm 3}$ (1052 cm-3) 85 $\pm$ 68 81 $\pm$ 65 55 $\pm$ 15
(3 components) O 0.11 0.18 $\pm$ 0.03 0.10 $\pm$ 0.01
  Ne 0.11 0.52 $\pm$ 0.09 $0.35\pm0.05$
  Other abundances $0.11\pm0.03$ $0.11\pm0.02$ 0.11 $\pm$ 0.01
  $\chi ^{2}$ 1.33 (549/413 d.o.f.) 1.24 (509/411 d.o.f.) 1.14 (469/411 d.o.f.)
Rev.200 Parameter MODEL A MODEL B MODEL C
  $kT_{\rm 1}$ (keV) 0.66 0.66 0.66
  $EM_{\rm 1}$ (1052 cm-3) 78 $\pm$ 24 81 $\pm$ 65 72 $\pm$ 26
  $kT_{\rm 2}$ (keV) 1.34 1.34 1.34
  $EM_{\rm 2}$ (1052 cm-3) 364 $\pm$ 63 320 $\pm$ 65 351 $\pm$ 26
VMEKAL $kT_{\rm 3}$ (keV) 3.6 3.6 0.34
  $EM_{\rm 3}$ (1052 cm-3) 0-146 0-163 0-46
(3 components) O 0.11 0.10 $\pm$ 0.03 0.08 $\pm$ 0.03
  Ne 0.11 $0.44 \pm 0.12$ $0.37 \pm 0.10$
  Other abundances $ 0.11\pm0.01 $ $ 0.11\pm0.01 $ 0.11 $\pm$ 0.01
  $\chi ^{2}$ 0.75 (167/223 d.o.f.) 0.69 (153/221 d.o.f.) 0.70 (156/221 d.o.f.)


Source LaTeX | All tables | In the text