Table 2: Spectral fits with a neutral absorber.
model $N_{\rm H}^a$ z $\alpha_E^b$ $\alpha_{\rm H}^c$ $E_{\rm break}^d$ or $E_{\rm cut}^e$ $\chi ^2$ (d.o.f.)
PL $0.16\pm0.03$ 0 FIX $0.62\pm0.03$     145.9/144
CUTOFFPL $\rm0.13^{+0.05}_{-0.03}$ 0 FIX $\rm0.47^{+0.11}_{-0.07}$   $\rm 150^{+300}_{-50}$ 131.8/143
BKNPL $\rm0.13^{+0.04}_{-0.03}$ 0 FIX $\rm0.73^{+0.32}_{-0.08}$ $1.52\pm0.08$ $\rm 5.0^{+3.0}_{-1.5}$ 136.1/142
Curved $\rm0.13^{+0.03}_{-0.03}$ 0 FIX $\rm0.49^{+0.09}_{-0.26}$ $\rm 3.5^{+3.0}_{-1.8}$ $\rm 36^{+19}_{-11}$ 131.8/142
a In 1022 cm-2.
b Power law energy index, $F(E)\propto E^{-\alpha_E}$.
c Hard power law energy index in the BKNPL and Curved models, $F(E)\propto E^{-\alpha_E}$ for $E<E_{\rm break}$ and $F(E)\propto E^{-\alpha_{\rm H}} \times E_{\rm break}^{(\alpha_{\rm H}-\alpha_E)}$for $E>E_{\rm break}$.
The Curved model is similar to the BKNPL model but the two power laws are joined smoothly.
d Break energy in keV in the BKNPL and Curved models.
e Exponential cut-off energy in keV in the CUTOFFPL model, $F(E)\propto E^{-\alpha_E}\times {\rm e}^{E/E_{\rm cut}}$.

Source LaTeX | All tables | In the text