Table 1: Best-fits to the 0.5-10 keV XMM-Newton PN persistent emission spectra of X1254-690 using a disk-blackbody model with an inner temperature $KT_{\rm in}$ and normalization k given by $(R_{\rm in}/d)^2$ where $R_{\rm in}$ in the inner radius in km and d the distance in units of 10 kpc and a power-law with a photon index, $\alpha $ together with an emission and two absorption lines.
Component Parameter 2001 January 2002 February
  $N{\rm _H}$ (1021 atom cm-2) $3.2 \pm 0.1$ $3.1 \pm 0.1$
  L (erg s-1, at 10 kpc) 1.1   1037 1.0   1037
  $\chi^2$/d.o.f. 264.6/225 244.6/225
Disk-blackbody $kT_{\rm in}$ (keV) $\rm 1.97 ~ ^{+0.04} _{-0.07}$ $2.31 \pm 0.03 $
  k $1.41 \pm 0.10$ $1.06 \pm 0.04$
Power-law $\alpha $ $2.20 \pm 0.09$ $2.34 \pm 0.09$
  1 keV normalization $0.106 \pm 0.006$ $0.099 \pm 0.005$
Emission line $E_{{\rm line}}$ (keV) $\rm0.96~ ^{+0.04} _{-0.06}$ $\rm0.93 ~ ^{+0.05} _{-0.09}$
  $\sigma$ (eV) $\rm 175 ~ ^{+75} _{-50}$ $175 \pm 65$
  EW (eV) $32 \pm 15$ $29 \pm 13$
Fe  XXVI K$\alpha $ abs $E_{{\rm line}}$ (keV) $6.95 \pm 0.03$ $6.96 \pm
0.04$
feature $\sigma$ (eV) <120 <95
  EW (eV) $\rm -27 ~ ^{+11} _{-8}$ $\rm -21 ~ ^{+8} _{-5}$
Fe  XXVI K$\beta$ abs $E_{{\rm line}}$ (keV) $\rm 8.20 ~ ^{+0.05} _{-0.10}$ $8.16 \pm 0.06$
feature $\sigma$ (eV) <170 <80
  EW (eV) $-17 \pm 9$ $-16 \pm 9$


Source LaTeX | All tables | In the text