Table 3: Absolute B, V, I magnitudes of Cepheids in open clusters.
Cepheid l b $\log P$ $\mu_0$ ${E(B-V)_{{\rm corr}}}$ B V I (B-V)0 ${{\cal R}_B}$ MB0 MV0 MI0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
EV Sct$^{\ast }$ 23.97 -0.47 0.490 10.92 0.621 11.293 10.139 8.670 0.533 4.06 -2.150 -2.683 -3.345
CEb Cas 116.56 -1.00 0.651 12.69 0.548 12.220 11.050 9.690c 0.622 4.10 -2.716 -3.338 -3.986
V1726 Cyg$^{\ast }$ 92.51 -1.61 0.627 11.02 0.297 9.885 9.006 7.986 0.582 4.07 -2.342 -2.925 -3.559
SZ Tau$^{\ast }$ 179.49 -18.74 0.652 8.72 0.294 7.377 6.524 5.524 0.559 4.06 -2.535 -3.095 -3.713
CF Cas 116.58 -0.99 0.688 12.69 0.531 12.335 11.136 9.754 0.668 4.12 -2.541 -3.209 -3.901
CEa Cas 116.56 -1.00 0.711 12.69 0.562 12.070 10.920 9.470c 0.588 4.09 -2.916 -3.504 -4.223
UY Per 135.94 -1.41 0.730 11.78 0.869 12.818 11.343 9.490 0.606 4.11 -2.531 -3.137 -3.861
CV Mon 208.57 -1.79 0.731 11.22 0.702 11.607 10.304 8.646 0.601 4.10 -2.490 -3.091 -3.836
QZ Nor$^{\ast }$ 329.46 -2.12 0.733 11.17 0.286 9.761 8.869 7.865 0.606 4.08 -2.574 -3.181 -3.813
V Cen 316.44 3.31 0.740 9.17 0.264 7.694 6.820 5.805 0.610 4.08 -2.553 -3.163 -3.835
$\alpha$ UMi$^{\ast }$ 123.28 26.46 0.748 5.19a 0.025 2.580 1.968 1.210 0.587 4.06 -2.709 -3.297 -4.023
CS Vel 277.09 -0.77 0.771 12.59b 0.771 13.049 11.703 10.068 0.575 4.09 -2.694 -3.269 -3.902
V367 Sct$^{\ast }$ 21.63 -0.83 0.799 11.32 1.208 13.390 11.560 9.210c 0.622 4.13 -2.921 -3.543 -4.323
BB Sgr 14.67 -9.01 0.822 9.11 0.276 7.920 6.934 5.832 0.710 4.12 -2.330 -3.040 -3.782
U Sgr 13.71 -4.46 0.829 9.07 0.403 7.792 6.695 5.448 0.694 4.12 -2.938 -3.633 -4.356
DL Cas 120.27 -2.55 0.903 11.22 0.479 10.119 8.969 7.655 0.671 4.12 -3.071 -3.743 -4.435
S Nor 327.75 -5.40 0.989 9.85 0.178 7.373 6.429 5.422 0.766 4.14 -3.215 -3.981 -4.757
TW Nor 330.36 0.30 1.033 11.47 1.214 13.672 11.667 9.287 0.791 4.21 -2.906 -3.697 -4.498
V340 Nord 329.75 -2.23 1.053 11.17 0.323 9.526 8.370 7.168 0.833 4.18 -2.995 -3.828 -4.610
VY Car 286.55 1.21 1.277 11.63 0.260 8.630 7.465 6.271 0.905 4.21 -4.094 -4.999 -5.855
RU Sct 28.19 0.23 1.294 11.60 0.930 11.135 9.463 7.472 0.742 4.17 -4.345 -5.087 -5.869
RZ Vel 262.88 -1.91 1.310 11.19 0.293 8.209 7.082 5.856 0.834 4.18 -4.204 -5.038 -5.884
WZ Sgr 12.11 -1.32 1.339 11.26 0.428 9.428 8.027 6.528 0.973 4.25 -3.649 -4.622 -5.565
SW Vel 266.19 -3.00 1.370 12.08 0.337 9.272 8.120 6.835 0.815 4.17 -4.215 -5.030 -5.876
T Mon 203.63 -2.55 1.432 11.14 0.195 7.292 6.125 4.980 0.972 4.24 -4.672 -5.645 -6.537
KQ Sco 340.39 -0.75 1.458 12.36 0.839 11.747 9.810 7.657 1.098 4.32 -4.241 -5.339 -6.401
U Car 289.06 0.04 1.589 11.46 0.287 7.465 6.282 5.052 0.896 4.21 -5.203 -6.099 -6.955
RS Pup 252.43 -0.19 1.617 11.28 0.453 8.462 7.034 5.490 0.975 4.25 -4.744 -5.719 -6.674
SV Vul 63.95 0.32 1.653 11.83 0.518 8.671 7.209 5.691 0.944 4.24 -5.356 -6.300 -7.144
GY Sge 54.94 -0.55 1.713 12.65 1.236 12.435 10.150 7.500 1.049 4.32 -5.557 -6.606 -7.649
S Vul 63.41 0.89 1.838 13.24 0.737 10.851 8.962 6.941 1.152 4.34 -5.588 -6.740 -7.803
a Independent of Pleiades.
b Walker (1987b).
c I magnitude from Sandage et al. (1999).
d Not listed in Table 1, because designated as CEP (not yet DCEP) by Berdnikov et al. (2000).
$^{\ast }$ Remarks to individual Cepheids:
EV Sct probable overtone pulsator; bright (Cepheid?) companion (Egorova & Kovtyukh 2001); omitted.
V1726 Cyg may be an overtone pulsator (Turner et al. 2001; Usenko et al. 2001). It is listed here with its observed period.
SZ Tau probable overtone pulsator; the inferred fundamental period of $P_0=4\hbox{$.\!\!^{\rm d}$ }482$ (Turner 1992) is listed, assuming P1/P2=0.71.
QZ Nor (=HD144972) probable overtone pulsator (Moffett & Barnes 1986); the inferred fundamental period of $P_0=5\hbox{$.\!\!^{\rm d}$ }408$ is listed.
$\alpha$ UMi probable overtone pulsator (Evans et al. 2002); the inferred fundamental period of $P_0=5\hbox{$.\!\!^{\rm d}$ }5910$ is listed.
V367 Sct double-mode Cepheid; the fundamental period is listed (Berdnikov et al. 1995).

Source LaTeX | All tables | In the text