A&A 402, L69-L72 (2003)
DOI: 10.1051/0004-6361:20030342
B. Larsson1 - R. Liseau1 - P. Bergman2 - P. Bernath3 - J. H. Black2 - R. S. Booth2 - V. Buat4 - C. L. Curry3 - P. Encrenaz5 - E. Falgarone6 - P. Feldman7 - M. Fich3 - H. G. Florén1 - U. Frisk8 - M. Gerin6 - E. M. Gregersen9 - J. Harju10 - T. Hasegawa11 - L. E. B. Johansson2 - S. Kwok11 - A. Lecacheux12 - T. Liljeström13 - K. Mattila10 - G. F. Mitchell14 - L. H. Nordh15 - M. Olberg2 - G. Olofsson1 - L. Pagani5 - R. Plume11 - I. Ristorcelli16 - Aa. Sandqvist1 - F. v. Schéele8 - N. F. H. Tothill14 - K. Volk9 - C. D. Wilson9 - Å. Hjalmarson2
1 - Stockholm Observatory, SCFAB, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
2 -
Onsala Space Observatory, 439 92 Onsala, Sweden
3 -
Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
4 -
Laboratoire d'Astronomie Spatiale, BP 8, 13376 Marseille Cedex 12, France
5 -
LERMA & FRE 2460 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, 75014 Paris, France
6 -
LERMA & FRE 2460 du CNRS, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
7 -
Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
8 -
Swedish Space Corporation, PO Box 4207, 171 04 Solna, Sweden
9 -
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
10 -
Observatory, PO Box 14, University of Helsinki, 00014 Helsinki, Finland
11 -
Department of Physics and Astronomy, University of Calgary, Calgary, ABT 2N 1N4, Canada
12 -
LESIA, Observatoire de Paris, Section de Meudon, 5 place Jules Janssen, 92195 Meudon Cedex, France
13 -
Metsähovi Radio Observatory, Helsinki University of Technology, Otakaari 5A, 02150 Espoo, Finland
14 -
Department of Astronomy and Physics, Saint Mary's University, Halifax, NS B3H 3C3, Canada
15 -
Swedish National Space Board, Box 4006, 171 04 Solna, Sweden
16 -
CESR, 9 avenue du Colonel Roche, BP 4346, 31029 Toulouse, France
Received 29 November 2002 / Accepted 1 February 2003
Abstract
Odin has successfully observed three regions in the Orion A cloud,
i.e. Ori KL, Ori S and the Orion Bar, in the 572.5 GHz rotational ground
state line of ammonia, ortho-NH3
,
and
the result for the Orion Bar represents the first detection in an ammonia line.
Several velocity components are present in the data. Specifically, the observed
line profile from the Orion Bar can be decomposed into two components,
which are in agreement with observations in high-J CO lines by Wilson et al. (2001).
Using the source model for the Orion Bar by these authors, our Odin observation
implies a total ammonia abundance of
.
Key words: ISM: individual objects: Orion A - clouds - molecules - abundances - stars: formation
The central parts of the Orion A cloud contain several different source regions, among which one can identify Orion KL, Orion S and the Orion Bar (see, e.g., Fig. 3 of Wilson et al. 2001). On angular scales of two arcminutes (the Odin beam size, Sect. 2), the Ori KL region, in particular, harbours a highly complex source structure, apparently with several components along the line of sight. The region has been reviewed by Genzel & Stutski (1989) and more recent results and references can be found in the papers of Wilson et al. (2001) and of Wiseman & Ho (1998). The latter authors presented VLA-maps in two inversion lines of para-ammonia, showing the emission to arise from finger-like structures. However, as in previous observations (e.g. Ho et al. 1979), the Orion Bar was not detected.
The structure of the NH3 molecule and its versatility as an astrophysical tool have been discussed by
Ho & Townes (1983). These authors also provide an energy level diagram. The rotational ground state
line of ammonia, NH
,
has a wavelength of 524
m and an upper state
energy of 28 K above ground. For the (1,1) and (2,2) inversion lines
at 1.3 cm, the corresponding values are 24 K and 65 K, respectively. The radiative lifetime of the
transition is shorter by orders of magnitude than those of the inversion lines and the line profile could therefore
potentially be probing regions of very different excitation conditions (cf. Table 2 of Liseau et al., this issue).
In particular for dynamical studies, the NH3 line is expected to complement or, in regions of undetectably low
water vapour abundance, to substitute for the ground state line of ortho-H2O (
110-101), since these resonance
lines share the property of being "effectively transparent'' up to very high optical depths, as they exhibit an
essentially linear growth of the intensity (for
of several hundred; see, e.g.,
Snell et al. 2000 and Liseau 2001).
Using the Kuiper Airborne Observatory (KAO), Keene et al. (1983) observed the NH3
line
toward Ori KL and made a five point cross with 1
spacing. Their observations will be compared
to those presented in this letter, which have been obtained with Odin (Sect. 2), a spaceborne submillimeter
telescope (Frisk et al., Hjalmarson et al. and Nordh et al., this issue). The reductions of
these data, which required some special and careful treatment, are described in detail in Sect. 3
and the results are presented in Sect. 4. The concluding discussion (Sect. 5) of this Letter will focus on the
NH3 emission from the Orion Bar, as this provides an entirely new piece of information for the complex Orion A region.
The phase-lock system for the 572 GHz receiver is not working properly. However, it is reasonably well locked at the
tuning frequency and the telluric ozone line O3 (
) 572.9 GHz
is frequently observed along parts of the Odin orbit, drifting across the receiver band. The line is
sufficiently close in frequency to the ammonia line NH3
572.5 GHz that it can be used to
establish the observing frequency scale, and hence allows us to restore the NH3 data.
The drift of the O3 line can be expected to correlate with the equipment temperature and, in particular, inversely with the
temperature measured at the local oscillator (LO).
That this is indeed the case is demonstrated in the upper panel of Fig. 1, where the center channel for the O3 line,
and identified by plus-signs, is shown as a function of the time, expressed as satellite revolution numbers.
The solid curve in that panel depicts the relation for the reciprocal LO-temperature,
.
Subtraction of the
relation from the O3 channel data points results in the swarm of plus signs in the middle
panel of Fig. 1. A polynominal fit to these points is shown by the full drawn curve [=
], depicting
the temperature behaviour measured at the telescope (main reflector). In the lower panel, the residual displays the final scatter about
the fixed central channel for the O3 line (rms = 0.7 channels = 0.36 km s-1).
The drift corrections to the Orion observations were done by applying the empirically determined relation
![]() |
(1) |
![]() |
(2) |
![]() |
Figure 2:
NH3
![]() ![]() ![]() ![]() ![]() |
Component 1 | Component 2 | ||||||
Offset | T0, 1 |
![]() |
![]() |
T0, 2 |
![]() |
![]() |
|
(arcmin) | (K) | (km s-1) | (km s-1) | (K) | (km s-1) | (km s-1) | |
(0, 0) | 2.0 | 9.1 | 4.9 | 0.9 | 9.9 | 16.0 | |
(0, -2) | 1.5 | 8.3 | 5.5 | ![]() |
![]() |
![]() |
|
(+2, -2) | 0.35 | 8.1 | 5.4 | 0.35 | 10.5 | 3.3 |
The NH3
spectra observed toward the three positions in Ori A are shown
in Fig. 2 (lower panel). The agreement with the KAO data toward Ori KL, also shown in that figure for
comparison, is striking, although the signal-to-noise ratio of the Odin data is far better. Keene et al. (1983) speculated
whether there existed some low intensity broad component in their data. That this is indeed the case has now been confirmed
by Odin. In our observations, the line intensity peaks at the KL position and decreases by about
a factor of two at Ori S and by a factor of five toward the Orion Bar. Changes in radial velocity of the
line centers are also evident. In the figure, the results of Gaussian fits to the line profiles
are also shown and their parameters are reported in Table 1. Four distinct velocity systems
can be identified: (1) a
= 9 km s-1 component of width 5 km s-1 (FWHM) is present toward
Ori KL, (2) a very broad feature (
km s-1), but centered at
= 10 km s-1, is also present in Ori KL, (3) a blueshifted line (
= 8 km s-1) of width 5.5 km s-1 toward the outflow
source Ori S and the Orion Bar and (4) a component at
= 10.5 km s-1 of width 3.3 km s-1 from the Orion Bar,
identical to CO (J = 4-3) (Wilson et al. 2001).
The result for the Orion Bar represents the first detection in an ammonia line.
The radial velocities found in the NH3
spectra are different from those quoted for various inversion lines
toward Ori KL by Hermsen et al. (1988a), but are in good agreement with those observed toward all positions
in the ortho-H2O (
110-101) 557 GHz line during an independent observing run (Olofsson et al., this issue).
The line shapes of these transitions do agree in the direction of Ori S and the Bar, but at the resolution of 1 MHz,
the NH3 572.5 GHz line core toward Ori KL is highly symmetric and does not display any self-absorption like feature
as does the H2O 557 GHz line.
For the Orion Bar, no previous NH3 line information, other than upper limit results, is in existence.
For the interpretation of this observation, we will have to rely on source models based primarily on other data.
The observed width of the Bar ranges from about 10
to 60
for a variety of molecules
(e.g., Tielens et al. 1993; Wilson et al. 2001).
Based on observations in high-J CO lines, estimates of the physical parameters of the Orion Bar have been given by Wilson et al. (2001).
These authors argue that the geometry is that of a 30
wide rod in the plane of the sky
and we assume that their model is applicable also to NH3.
The observed width of the NH3 and CO lines,
km s-1, can be
interpreted as a velocity gradient of 45 km s-1 pc-1. The hyperfine structure of the NH3 transition (Townes & Schawlow 1955;
cf. Liseau et al., this issue) does not significantly contribute to the observed width of the line.
The column density of H2 is given by Wilson et al. (2001) as
cm-2.
As kinetic gas temperature we adopt the peak value of their observed CO (7-6) line,
K.
We use a large velocity gradient code to estimate the statistical equilibrium level populations and to solve the equation of radiative transfer along the line of sight. We have calculated the level energies and Einstein-A values according to Poynter & Kakar (1975), using the dipole moment of Cohen & Poynter (1974). For the computation of the collision rates, we adopted the values provided by Danby et al. (1988) for collisions with para-H2 (J=0), in conjunction with the assumption of detailed balance for the inverse rates.
For the source model of Wilson et al. (2001), we find the abundance of ortho-ammonia relative to H2 in the Orion Bar to be
,
where the NH3 (
)
line radiation temperature is
K, corrected for partial beam filling (
0.2). This result for
remains unaltered, if the kinetic temperature were higher, e.g.,
K.
The model is also in agreement with the upper limits on the inversion lines of
Ho et al. (1979) and Wiseman & Ho (1998), provided the ammonia ortho-to-para ratio is not largely different from unity.
This would be expected for a gas at such elevated temperatures, since for ammonia the ortho-to-para ratio
as
.
The high temperature ortho-to-para
ratio of 1.0 has previously been determined for Ori KL by Morris et al. (1973). For the Orion Bar, such ratio would thus
imply a total ammonia abundance
.
The ammonia emission region is probably not much
narrower than 10
and average densities do probably not exceed 106 cm-3 by large, so that it is likely that
.
These estimates can be compared to
the values deduced for the Ori KL components "hot core'' (
10-7-10-6, Dishoeck 1993; Hermsen et al. 1988b)
and "plateau'' (<10-8, van Dishoeck et al. 1993).
The density of the applied model is lower than the critical density of the (
)
transition by more than one order of magnitude and, hence, the line is very subthermally excited (
K).
For the inferred abundance, the line is moderately optically thick (
).
The validity of the presented results rests on the assumption that the CO model by Wilson et al. (2001) is applicable to NH3. The observation of the Orion Bar in the (3,3) inversion line could provide a test, as this line is predicted to be the strongest NH3 transition.