Table 1: Integrated intensities, column densities, and abundances.

Position
$I_{\rm mb}$ (K  $\rm km~s^{-1}$)   $N(\mbox{H$_{2}$ O})^{{\rm a}}$ $X(\mbox{H$_{2}$ O})^{{\rm a}}$
rel. to KL H2O H218O   (cm-2)  
$0\hbox{$^\prime$ },0\hbox{$^\prime$ }$ 323 18.6   $4\times10^{17~{\rm b}}$ $1\times10^{-4~{\rm c}}/~8\times10^{-6~{\rm d}}$
$0\hbox{$^\prime$ },-2\hbox{$^\prime$ }$ 24.0 0.78   $9\times10^{13}$ $10^{-8~{\rm e}}$
$^{{\rm a}}$ Using the optically thin LTE approximation with H218O and T=72 K and 25 K for KL and 2$^\prime $S, respectively.
$^{{\rm b}}$ Assuming an H218O Gaussian source size of 15 $^{\prime\prime}$.
$^{{\rm c}}$ For $N(\mbox{H$_{2}$ })=3\times10^{21}$ cm-2 (shocked outflow component).
$^{{\rm d}}$ For $N(\mbox{H$_{2}$ })=5\times10^{22}$ cm-2 (total H2 column through outflow).
$^{{\rm e}}$ For $N(\mbox{H$_{2}$ })=10^{22}$ cm-2.

Source LaTeX | All tables | In the text