next previous
Up: The Hernquist model revisited:


Subsections

3 Isotropic models

3.1 Background

The simplest dynamical models are those where the augmented density is a function of the potential only, $\tilde{\rho}=\tilde{\rho}(\psi)$. For such models, the distribution function is only a function of the binding energy, i.e. the distribution function is isotropic. In this case, the integral Eq. (1) can be inverted to find the well-known Eddington relation

 \begin{displaymath}F({\cal{E}})
=
\frac{1}{2\sqrt{2}\pi^2}
\frac{{\rm d}}{{\r...
...{{\rm d}\psi}~
\frac{{\rm d}\psi}{\sqrt{{\cal{E}}-\psi}}\cdot
\end{displaymath} (12)

For such isotropic models, we do not use the general anisotropic moments (6), but define the isotropic moments as

\begin{displaymath}\mu_{2n}(r)
=
4\pi\int F({\cal{E}})~v^{2n+2}~{\rm d}v.
\end{displaymath} (13)

Similarly as for the anisotropic moments, we can derive a relation that allows to calculate the augmented isotropic moments from the augmented density $\tilde{\rho}(\psi)$. Indeed, they satisfy the relation (Dejonghe 1986)

 \begin{displaymath}\tilde{\mu}_{2n}(\psi)
=
\frac{(2n+1)!!}{(n-1)!!}
\int_0^{\psi}
(\psi-\psi')^{n-1}~\tilde{\rho}(\psi')~{\rm d}\psi'.
\end{displaymath} (14)

In particular, we obtain an expression for the velocity dispersion profile by setting n=1,

 \begin{displaymath}\sigma^2(r)
=
\frac{1}{\rho(r)}
\int_0^{\psi(r)}\tilde{\rho}(\psi')~{\rm d}\psi'.
\end{displaymath} (15)

3.2 The isotropic Hernquist model

The isotropic model that corresponds to the potential-density pair (2ab) is described in full detail by Hernquist (1990). We restrict ourselves by resuming the most important results, for a comparison with the anisotropic models discussed later in this paper. The augmented density reads

 \begin{displaymath}\tilde{\rho}(\psi)
=
\frac{1}{2\pi}~\frac{\psi^4}{1-\psi}\cdot
\end{displaymath} (16)

Substituting this density into Eddington's formula (12) yields the distribution function
 
$\displaystyle F({\cal{E}})
=
\frac{1}{8\sqrt{2}\pi^3}
\left[
\frac{\sqrt{{\cal{...
...cal{E}})^2}
+
\frac{3\arcsin\sqrt{{\cal{E}}}}{(1-{\cal{E}})^{5/2}}
\right]\cdot$     (17)

Combining the density (16) with the general formula (14) gives us the moments of the distribution function,

\begin{displaymath}\tilde{\mu}_{2n}(\psi)
=
\frac{3\cdot2^{n+9/2}}{(2\pi)^{3/2...
...{\Gamma(n+5)}~
\psi^{n+4}~
{}_2F_1\left(5,1;n+5;\psi\right).
\end{displaymath} (18)

For all $n\geqslant0$, this expression can be written in terms of rational functions and logarithms. For example, for the velocity dispersions, we obtain after substitution of the Hernquist potential (2a),

 \begin{displaymath}\sigma^2(r)
=
r~(1+r)^3~\ln\left(\frac{1+r}{r}\right)
-\frac{r~(25+52r+42r^2+12r^3)}{12(1+r)},
\end{displaymath} (19)

in agreement with Eq. (10) of Hernquist (1990). From an observational point of view, it is very useful to obtain an explicit expression for the line-of-sight velocity dispersion. For isotropic models, the line-of-sight dispersion is easily found by projecting the second-order moment on the plane of the sky, i.e.

 \begin{displaymath}\sigma_{\rm p}^2(R)
=
\frac{2}{I(R)}~
\int_R^\infty
\frac{\rho(r)~\sigma^2(r)~r~{\rm d}r}{\sqrt{r^2-R^2}}\cdot
\end{displaymath} (20)

For the Hernquist model this yields after some algebra
                  $\displaystyle I(R)~\sigma_{\rm p}^2(R)$ = $\displaystyle \frac{1}{24\pi~(1-R^2)^3}$  
    $\displaystyle \times
\Bigl[3R^2~\left(20-35R^2+28R^4-8R^6\right)~X(R)$  
    $\displaystyle +
(6-65R^2+68R^4-24R^6)\Bigr]
-\frac{R}{2}\cdot$ (21)


next previous
Up: The Hernquist model revisited:

Copyright ESO 2002