A&A 391, 519-530 (2002)
DOI: 10.1051/0004-6361:20020895

Warps and correlations with intrinsic parameters of galaxies in the visible and radio

N. Castro-Rodríguez1,2 - M. López-Corredoira2 - M. L. Sánchez-Saavedra3 - E. Battaner3


1 - Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain
2 - Astronomisches Institut der Universität Basel, Venusstrasse 7, Binningen, Switzerland
3 - Departamento de Física Teórica y del Cosmos, University of Granada, Avd. Fuentenueva SN., 18002 Granada, Spain

Received 15 April 2002 / Accepted 30 May 2002

Abstract
From a comparison of the different parameters of warped galaxies in the radio, and especially in the visible, we find that:
a) No large galaxy (large mass or radius) has been found to have high amplitude in the warp, and there is no correlation of size/mass with the degree of asymmetry of the warp.
b) The disc density and the ratio of dark to luminous mass show an opposing trend: smaller values give more asymmetric warps in the inner radii (optical warps) but show no correlation with the amplitude of the warp; however, in the external radii is there no correlation with asymmetry.
c) A third anticorrelation appears in a comparison of the amplitude and degree of asymmetry in the warped galaxies.
Hence, it seems that very massive dark matter haloes have nothing to do with the formation of warps but only with the degree of symmetry in the inner radii, and are unrelated to the warp shape for the outermost radii. Denser discs show the same dependence.

Key words: galaxies: statistics - galaxies: spiral - galaxies: structure - galaxies: kinematics and dynamics


1 Introduction

Many spiral galaxies have warps, disc distortions with an integral-sign shape (S-warp), cup-shape (U-warp), or some form of asymmetry. The Milky Way is an example (Burton 1988, 1992). Indeed, most of the spiral galaxies for which we have relevant information on their structure (because they are edge-on and nearby) show a warp. Sánchez-Saavedra et al. (1990, 2002) and Reshetnikov & Combes (1998) show that nearly half of the spiral galaxies of selected samples are warped, and many of the rest might also be warped since warps in galaxies with low inclination are difficult to detect. For high redshift, it seems that the effect of warping is even stronger (Reshetnikov et al. 2002).

At present, there are several theories in the literature about the causes of warps in galactic discs. Four remarkable examples of theories which explain the formation of warps are:

All these theories make different assumptions about the conditions of the spiral galaxies and their neighbourhood (massive haloes, magnetic fields, intergalactic medium, satellites), so the study of warps becomes interesting as a tool for discriminating among the different scenarios. There are already important works about the observed properties of warps, however we feel that these are inadequate, and that an effort must be made to reduce the number of possible hypotheses. Here, we do not aim to give a final answer to the question but instead present some new correlations that might be useful together with other data to discriminate among the different models.

Some interesting observational results already published are the dependence on the environment (isolated or in clusters) of the warp amplitude asymmetries (differences between the east and west wings of the warp) and frequency (in the visible Reshetnikov & Combes 1998 and also in the radio García-Ruiz 2001; Kuijken & García-Ruiz 2001). Curiously, more isolated galaxies seem to be more frequently warped (García-Ruiz 2001; Kuijken & García-Ruiz 2001) and this would be against the gravitational interaction of satellites, at least in some cases. Halo-disk misalignments without external dependence are also excluded. It seems that intergalactic magnetic fields, or the accretion of intergalactic matter on to either the halo or the disc are better representations. Therefore, there already exists in the literature some papers which have correlated the warp characterictics with the environmental parameters. We are not going to explore these correlations again, but rather focus on the correlations with the intrinsic parameters of galaxies. For instance, one interesting question now is whether there is any correlation between halo properties and warp amplitude/asymmetry.

If the halo were an important element in the formation of warps, we should observe some dependence on it. Some models have a warp amplitude depending on the halo mass. Apart from the hypotheses which talk about a halo as an intermediary between external forces and the disc (Weinberg 1998; Jiang & Binney 1999), works by Nelson & Tremaine (1995) or Debattista & Sellwood (1999) predict that, although in most cases the dynamical friction between the disc and the halo damps the warp, it can also excite the warp. This is the reason why we will try to analyze the optical and radio warps in the present paper through the correlations with the mass/luminosity ratios derived from the rotation curves (provided they are related to the fraction of dark matter in the galaxies). We also produce correlations with other parameters that represent the intrinsic size of the galaxy (radius, mass, or luminosity).

   
2 Data

This study is based on two samples of galaxies, one of 228 galaxies in optical bands (see Table 1) and the other of 26 galaxies in radio (see Table 2). We have completed the information on the warp amplitudes with some intrinsic parameters of the galaxies.

2.1 Optical data

The optical warp measurements come from Sánchez-Saavedra et al. (1990, 2002), who have analysed images obtained from the Palomar Observatory Sky Survey (POSS) and the DSS. They measured the amplitude of the warp in galaxies mostly from the southern hemisphere (Sánchez-Saavedra et al. 1990, 2002); however, we also took some data from the northern hemisphere (Sánchez-Saavedra et al. 1990). The galaxies were selected according to the following criteria:

We took these data and sought several intrinsic parameters of each galaxy in the literature. The H-band ($\lambda$ 1.6 $\mu$m) magnitude was used because it is a good mass tracer of the stellar population. Moreover, the luminous mass in NIR bands is not much affected by dust and gas extinction as the visible bands are and is less contaminated by the young population of the spiral arms. The total luminosity of a galaxy near 2 $\mu$m is thought to be a better tracer of the stellar mass than the visible (which is biased by recent star formation) or the far-infrared (biased again by recent star formation, which creates and heats dust grains that emit thermally in this waveband; Jablonka & Arimoto 1992). We then tried to find some correlations between these intrinsic parameters and the warp amplitudes in our sample. In Table 1 are shown all the galaxies with these parameters. The columns list the following information:


 

 
Table 1: Optical data. Columns in the table represent: name of the galaxy, warp amplitude in the west and east side of the galaxy, redshift, maximum rotation velocity, log(D25), H magnitude and distance.
PGC/NGC East WA West WA cz $V_{\rm rot}$ log D25 $m_{\rm H}$ d
      (km s-1) (km s-1) 0.1 arcmin   (Mpc)
PGC 474 13 12 1542 i) 139 i) 1.53 -- 20.6
PGC 627 13 13 1495 a) 77 1) 1.39 -- 20.0*
PGC 725 19 17 6004 a) 226 1) 1.34 -- 80.0
PGC 1851 20 14 1596 a) 233 1) 1.92 7.6 21.3
PGC 1942 8 13 7110 h) 108 h) 1.41 10.1 94.8
PGC 1952 15 12 2626 a) 205 1) 1.45 -- 35.0
PGC 2228 13 12 3043 h) 115 1) 1.31 11.6 40.6
PGC 2482 15 17 3946 h) 291 h) 1.45 9.2 52.6
PGC 2789 12 15 241 g) 204 4) 2.43 4.5 3.4*
PGC 2800 13 13 5765 h) 219 h) 1.24 -- 76.9
PGC 2805 25 17 1345 c) 59 s) 1.48 -- 17.9
PGC 3743 14 12 2290 a) 172 a) 1.57 -- 30.5
PGC 4440 13 20 3552 a) 198 1) 1.41 9.8 47.4
PGC 4912 17 25 5883 a) 234 1) 1.29 10.1 40.6
PGC 5688 9 5 5431 h) 255 h) 1.34 9.8 72.4
PGC 6966 4 12 5005 h) 257 1) 1.48 -- 66.7
PGC 7306 13 13 4443 h) 136 h) 1.29 -- 59.2
PGC 7427 6 13 5530 a) 178 1) 1.27 -- 73.7
PGC 8326 7 8 8133 a) 312 1) 1.40 10.2 108.4
PGC 8673 9 10 1890 h) 96 1) 1.34 -- 25.2
PGC 9582 5 11 4773 h) 294 1) 1.33 -- 63.6
PGC 10965 7 7 2065 a) 160 1) 1.57 -- 27.5
PGC 11198 25 20 4495 h) 211 h) 1.45 -- 59.9
PGC 11595 18 18 1391 a) 83 1) 1.47 12.0 18.5
PGC 11659 10 10 5529 a) 255 1) 1.36 9.8 73.7
PGC 11851 9 6 1318 a) 116 1) 1.53 10.2 17.5
PGC 12521 15 10 3949 a) 178 1) 1.34 10.5 52.6
PGC 13171 14 10 1812 h) 109 h) 1.40 10.1 24.1
PGC 13458 9 6 1068 a) 150 1) 1.59 9.2 14.2
PGC 13569 0 0 1638 a) 65 1) 1.36 11.2 21.8
PGC 13646 12 8 2168 C) 168 1) 1.50 -- 28.9
PGC 13727 15 14 1179 a) 193 1) 1.88 8.3 15.7
PGC 13809 6 0 1882 a) 131 1) 1.69 9.4 25.0
PGC 13912 9 9 980 a) 120 1) 1.63 -- --
PGC 14071 9 9 1050 a) 84 h) 1.40 -- 14.0
PGC 14190 7 16 1279 a) 95 1) 1.56 -- 17.0
PGC 14255 13 13 1291 a) 95 1) 1.28 11.3 17.2
PGC 14259 9 13 4111 a) 175 1) 1.43 10.8 54.8
PGC 14337 0 0 5386 a) 182 1) 1.31 10.7 71.8
PGC 14337 0 0 5386 a) 182 1) 1.31 10.7 72.0
PGC 14397 8 8 1094 a) 190 1) 1.72 -- 14.6
PGC 14824 7 10 1359 C) 92 1) 1.59 -- 18.1
PGC 15455 9 8 1851 a) 120 1) 1.44 -- 24.6
PGC 15635 9 17 4852 h) 288 h) 1.52 -- 64.6
PGC 15654 10 10 4759 h) 225 h) 1.37 -- 63.4
PGC 15674 14 15 3705 h) 202 h) 1.27 10.0 49.4
PGC 15749 20 20 1678 a) 92 1) 1.38 -- 22.4
PGC 16144 0 0 2819 h) 155 h) 1.35 10.7 37.6



 
Table 1: continued.
PGC/NGC East WA West WA cz $V_{\rm rot}$ log D25 $m_{\rm H}$ d
      (km s-1) (km s-1) 0.1 arcmin   (Mpc)
PGC 16168 7 7 4577 h) 170 h) 1.22 -- 61.0
PGC 16199 12 12 1169 a) 87 1) 1.44 -- 15.6
PGC 16636 0 0 4329 h) 199 h) 1.49 -- 57.7
PGC 17056 10 10 2828 a) 172 1) 1.24 -- 37.7
PGC 17174 0 0 1755 a) 158 h) 1.51 -- 23.4
PGC 17969 10 10 2382 h) 145 1) 1.34 10.5 31.8
PGC 18437 6 5 1228 a) 137 1) 1.60 9.6 16.4
PGC 18765 0 0 1696 i) 143 a) 1.52 9.8 22.6
PGC 19996 5 5 2681 h) 166 f) 1.35 10.1 35.7
PGC 21815 6 6 1131 b) 98 b) 1.67 8.4 15.1
PGC 21822 17 7 3237 h) 245 h) 1.48 9.3 43.1
PGC 22272 0 0 1558 h) 130 h) 1.45 11.1 20.8
PGC 22338 8 9 1119 ii) 148 m) 1.80 -- 14.9*
PGC 22910 13 12 5954 a) 223 1) 1.41 -- 79.4
PGC 23558 20 20 1776 h) 91 h) 1.27 -- 23.7
PGC 23992 15 17 4533 a) 190 1) 1.15 -- 60.4
PGC 24685 6 8 4570 a) 308 1) 1.48 9.4 60.9
PGC 25886 9 9 1838 h) 256 h) 1.63 -- 24.5
PGC 25926 3 3 2178 a) 158 a) 1.65 -- 29.0
PGC 26561 10 10 1640 a) 245 1) 1.75 -- 21.8
PGC 27135 0 0 929 i) 100 1) 1.86 -- 6.40*
PGC 27735 13 13 4449 a) 171 1) 1.28 -- 59.3
PGC 28117 17 27 4315 a) 170 1) 1.41 -- 57.5
PGC 28246 17 20 2893 a) 183 1) 1.50 -- 38.5
PGC 28283 0 0 2868 h) 220 h) 1.59 -- 38.2
PGC 28778 8 8 2697 a) 154 i) 1.40 -- 36.0
PGC 28840 7 8 2802 a) 123 1) 1.53 -- 37.3
PGC 28909 0 0 2520 a) 208 1) 1.83 -- 33.6
PGC 29691 0 0 2840 h) 142 1) 1.35 -- 37.9
PGC 29716 0 0 2526 v) 161 k) 1.59 -- 33.7
PGC 29743 9 9 2603 j) 164 1) 1.50 -- 34.7
PGC 29841 0 0 3603 h) 185 1) 1.32 10.5 48.0
PGC 30716 0 0 3138 a) 160 1) 1.30 -- 41.8
PGC 31154 0 0 3608 a) 254 1) 1.35 -- 48.1
PGC 31426 10 6 5042 C) 290 u) 1.41 -- 67.2
PGC 31677 10 0 3756 h) 204 1) 1.50 -- 50.1
PGC 31723 11 0 4152 h) 169 1) 1.32 -- 55.4
PGC 31919 0 0 1032 a) 60 1) 1.46 11.8 13.8
PGC 31995 8 8 2932 a) 185 1) 1.45 -- 39.1
PGC 32271 6 7 3047 h) 218 h) 1.54 -- 40.6
PGC 32328 0 0 5704 a) 245 1) 1.30 -- 76.0
PGC 32550 6 0 3108 j) 114 a) 1.54 -- 41.4
PGC 35861 25 25 2702 h) 241 h) 1.53 -- 36.0
PGC 36315 10 6 3701 a) 136 1) 1.21 -- 49.3
PGC 37178 0 0 2013 a) 141 1) 1.60 9.7 26.8
PGC 37243 5 4 2944 a) 176 1) 1.42 -- 39.2
PGC 37271 7 6 1702 a) 123 a) 1.64 -- 22.7
PGC 37304 9 9 5715 a) 254 1) 1.36 -- 76.2
PGC 37334 0 0 2889 b) 162 b) 1.42 -- 38.5
PGC 38426 12 11 4476 C) 198 1) 1.31 -- 59.7
PGC 38464 5 9 1728 a) 121 1) 1.38 -- 23.0
PGC 38841 0 0 3133 a) 150 h) 1.31 -- 41.8
PGC 40023 0 0 2940 a) 237 j) 1.50 -- 39.2
PGC 40284 17 19 2002 a) 176 1) 1.49 9.3 26.7
PGC 42684 0 0 5502 a) 221 1) 1.32 -- 73.4
PGC 42747 13 20 3210 a) 145 1) 1.42 11.2 42.8
PGC 43021 0 0 5260 a) 278 1) 1.41 10.0 70.1
PGC 43224 10 10 3211 h) 162 h) 1.25 10.3 42.8
PGC 43313 0 0 3693 C) 209 u) 1.40 10. 49.2
PGC 43330 14 16 1408 c) 60 2) 1.47 10.3 18.8



 
Table 1: continued.
PGC/NGC East WA West WA cz $V_{\rm rot}$ logD25 $m_{\rm H}$ d
      (km s-1) (km s-1) 0.1 arcmin   (Mpc)
PGC 43342 0 0 4459 h) 254 h) 1.39 -- 59.4
PGC 43679 0 0 2258 i) 106 j) 1.39 -- 30.1
PGC 44254 0 0 2839 c) 142 u) 1.28 10.7 37.8
PGC 44271 0 0 3376 a) 172 1) 1.43 -- 45.0
PGC 44358 0 0 1487 c) 114 i) 1.51 -- 19.8
PGC 44409 0 0 2173 a) 184 1) 1.67 -- 29.0
PGC 44931 8 7 3812 c) 201 1) 1.45 -- 50.8
PGC 44966 0 0 4995 a) 231 1) 1.19 -- 66.6
PGC 45006 9 13 4527 c) 206 1) 1.42 -- 60.4
PGC 45098 12 9 2896 a) 169 1) 1.46 -- 38.6
PGC 45127 10 10 4007 h) 180 1) 1.27 10.7 53.4
PGC 45279 14 14 560 a) 180 a) 2.31 7.5 6.7*
PGC 45487 0 0 2621 a) 114 1) 1.48 -- 34.9
PGC 45911 0 0 2754 a) 143 1) 1.47 -- 36.7
PGC 45952 0 0 3006 a) 170 1) 1.38 -- 40.1
PGC 46441 10 10 2744 d) 191 2) 1.54 -- 36.6
PGC 46650 4 15 2566 e) 131 a) 1.46 -- 34.2
PGC 46768 0 0 2256 a) 112 1) 1.25 -- 30.1
PGC 47345 7 14 3604 h) 207 h) 1.52 -- 48.0
PGC 47394 0 0 1503 a) 251 a) 1.91 8.6 20.0
PGC 47948 8 9 2577 a) 158 1) 1.40 -- 34.4
PGC 48359 0 0 3631 v) 229 1) 1.31 -- 48.4
PGC 49129 9 15 141 a) 47 a) 1.41 -- --
PGC 49190 17 15 3931 h) 93 h) 1.23 -- 52.4
PGC 49586 8 8 2760 a) 196 b) 1.45 -- 36.8
PGC 49676 11 13 2663 a) 241 a) 1.76 8.7 35.5
PGC 49836 4 10 2907 a) 153 1) 1.37 -- 38.8
PGC 50676 14 15 1541 a) 112 1) 1.64 10.9 20.5
PGC 50798 0 0 3017 a) 164 1) 1.41 -- 40.2
PGC 51613 0 0 2245 a) 123 1) 1.48 -- 29.9
PGC 52410 0 0 2869 a) 174 1) 1.35 -- 38.2
PGC 52411 9 9 3420 a) 215 1) 1.45 9.5 45.6
PGC 52991 0 0 2945 a) 99 1) 1.30 11.3 39.3
PGC 53361 0 0 4510 a) 152 1) 1.36 -- 60.1
PGC 54392 0 0 522 m) 79 5) 2.05 -- 7.0*
PGC 54637 9 12 4655 a) 212 1) 1.40 -- 62.0
PGC 56077 0 0 2692 a) 115 1) 1.30 -- 35.9
PGC 57582 0 0 2044 f) 169 i) 1.78 -- 27.2
PGC 57876 0 0 3410 a) 222 1) 1.59 -- 45.5
PGC 59635 0 0 1508 a) 101 1) 1.57 -- 20.1
PGC 60216 15 15 2859 a) 109 1) 1.30 -- 38.1
PGC 60595 0 0 4698 a) 190 1) 1.39 -- 62.6
PGC 62024 0 0 3183 a) 201 1) 1.22 -- 42.4
PGC 62706 0 0 3182 a) 133 1) 1.57 -- 42.4
PGC 62782 8 4 1841 a) 83 1) 1.47 -- 24.5
PGC 62816 10 10 5024 a) 233 1) 1.25 -- 66.9
PGC 62922 7 0 4404 a) 280 1) 1.57 -- 58.7
PGC 62964 13 13 2847 a) 241 4) 1.62 -- 38.0
PGC 63395 3 6 1928 a) 117 a) 1.51 -- 25.7
PGC 63577 12 12 4231 a) 138 1) 1.29 -- 56.4
PGC 64597 5 5 4196 a) 120 a) 1.34 -- 55.9
PGC 65794 9 3 9150 a) 323 1) 1.42 -- 122.0
PGC 65915 11 8 3122 a) 177 1) 1.53 -- 41.6
PGC 66530 14 7 3144 a) 266 1) 1.50 -- 41.9
PGC 66617 0 0 2715 r) 101 1) 1.25 -- 36.2
PGC 66836 0 0 797 d) 73 1) 1.52 -- 16.2*
PGC 67045 0 0 857 d) 96 3) 1.89 9.3 16.0*
PGC 67078 0 0 2479 a) 85 1) 1.30 -- 33.0
PGC 67158 0 7 3400 a) 175 1) 1.44 10.3 45.3
PGC 67904 6 5 2635 a) 264 1) 1.78 8.5 35.1



 
Table 1: continued.
PGC/NGC East WA West WA cz $V_{\rm rot}$ logD25 $m_{\rm H}$ d
      (km s-1) (km s-1) 0.1 arcmin   (Mpc)
PGC 68223 11 11 2847 r) 169 r) 1.38 10.1 38.0
PGC 68389 6 5 1746 a) 174 1) 1.64 -- 23.3
PGC 69161 19 18 2091 k) 117 1) 1.55 10.9 27.9
PGC 69539 9 8 1240 a) 102 1) 1.60 10.7 16.5
PGC 69661 16 11 2360 a) 175 1) 1.48 9.8 31.5
PGC 69707 0 0 2364 a) 100 1) 1.59 -- 31.5
PGC 69967 0 0 3001 a) 148 1) 1.41 10.5 40.0
PGC 70025 7 7 2857 n) 167 f) 1.50 -- 38.1
PGC 70070 0 0 1681 a) 109 1) 1.58 -- 22.4
PGC 70081 9 9 1940 a) 240 1) 1.49 -- 25.9
PGC 70084 13 7 5041 a) 308 a) 1.31 -- 67.2
PGC 70324 0 0 1059 a) 85 a) 1.62 10.1 14.1
PGC 71800 7 0 2008 a) 101 a) 1.24 -- 26.7
PGC 71948 0 0 2876 a) 253 1) 1.74 -- 38.3
PGC 72178 4 8 1489 a) 110 1) 1.43 -- 19.8
NGC 4013 5 5 834 f) 193 1) 1.72 8.7 12.0*
NGC 1560 5 5 -36 d) 76 1) 1.99 9.4 3.0*
NGC 2654 8 8 1347 f) 197 1) 1.63 -- 22.4
NGC 2683 7 7 411 f) 275 1) 1.97 6.8 5.1*
NGC 2820 12 16 3811 o) 210 1) 1.46 9.5 50.8
NGC 2820 12 16 3811 o) 210 1) 1.46 9.5 50.8
NGC 3510 10 10 705 ll) 83 1) 1.58 11.2 9.0*
NGC 3628 16 16 843 s) 223 1) 2.17 6.9 6.7*
NGC 4010 6 6 907 i) 118 1) 1.62 10.2 11.0*
NGC 4565 2 2 1282 t) 259 1) 2.21 6.7 10.0
NGC 6045 11 11 9986 a) 258 1) 1.12 10.9 133.1
NGC 6161 14 12 5904 a) 256 1) 1.29 10.2 78.7
NGC 6242 13 13 4620 a) 172 1) 1.28 -- 61.6
NGC 7640 7 7 369 f) 110 1) 2.03 9.3 9.2*

The references of each value are: * Huchtmeier et al. (1989); a) Mathewson et al. (1996); b) Di Nella et al. (1996); c) Da Costa et al. (1998); d) Saunders et al. (2000); e) Longmore et al. (1982); f) Haynes et al. (1998); g) Huchtmeier et al. (1985); h) Theureau et al. (1998); i) Fisher et al.(1981); ii) Tully (1988); j) Richter et al. (1987); k) Davies et al. (1989); l) de Vaucouleurs et al. (1991), ll) Thuan et al. (1981); m) Strausset al. (1992); n) Fairall et al. (1988); o) Staveley-Smith et al. (1987); p) Dressler et al. (1991); q) Fairall et al. (1991); r) Chengalur et al. (1993); s) Tifft et al. (1988); t) Giovanelli et al. (1997); u) Fairall et al. (1992); v) Bottinelli et al. (1993); w) Loveday et al. (1996); 1) Mathewson et al. (1992); 2) Staveley-Smith et al. (1988); 3) Reif et al. (1982); 4) Corradi et al. (1991); 5) Banks et al. (1999).


With this information, we sought any correlation between the amplitude of the warp or the difference between the east side and west side, and mass/luminosity, dimensions, infrared luminosity or total mass of the galaxies derived from the rotation curves. The results are commented on in Sect. 3.

2.2 Radio data

Radio data are from García-Ruiz (2001). There are only 26 galaxies with measurements of warps at these wavelengths. All the information is given in Table 2; the meaning of each column is the same as for the optical data. There are no other important works on radio warp amplitudes in the literature. In most cases, the warp is more prominent in radio observations than in optical images because the former extends to greater galactocentric distances. The galaxies were selected according the following criteria:

Again, we have performed the same analysis as in the previous section for optical data, as described in the following section.


  \begin{figure}
\par\mbox{\epsfig{file=figopt.ps,width=13.2cm} }
\par\end{figure} Figure 1: Optical data from Sánchez-Saavedra et al. (2002). The panels represent from top to bottom: mass/luminosity versus warp amplitude, total mass in solar masses versus warp amplitude, R25 versus warp amplitude, absolute magnitude versus warp amplitude, Mass/luminosity versuswarp asymmetry, total mass in solar masses versus warp asymmetry, R25 versus warp asymmetry for optical sample, absolute magnitudeversus warp asymmetry and amplitude versus warp asymmetry. The points represent each galaxy in the sample and the line is the average of the galaxies with amplitude >3, taking a given width of the bin in the x axis.
Open with DEXTER


  \begin{figure}
\par\mbox{\epsfig{file=figrad.ps,width=13.2cm} }
\par\end{figure} Figure 2: Radio data from García-Ruiz (2001). The panels represent from top to bottom: mass/luminosity versus warp amplitude, total mass in solar masses versus warp amplitude, R25 versus warp amplitude, absolute magnitude versus warp amplitude, mass/luminosity versus warpasymmetry, total mass in solar masses versus warp asymmetry, R25 versus warp asymmetry for optical sample, absolute magnitude versuswarp asymmetry and amplitude versus warp asymmetry. The points represent each galaxy in the sample and the line is the average of the galaxies, taking a given width of the bin in the x axis.
Open with DEXTER

   
3 Analysis of the correlations

With the information available in the tables we can determine R25 (kpc) from the angular size and the distance, and the mass M=R25v2/G. The luminosity (or absolute magnitude) is also immediately derived once we know the apparent magnitude and the distance. We define the amplitude as the $\frac{1}{2}({\rm East~WA+West~WA})$and the asymmetry as $\vert{\rm East~WA-West~WA}\vert/({\rm East~WA+West~WA})$. In this section, we analyse the correlations among the different quantities.

Our results are represented in Figs. 1 and 2 for optical and radio warps respectively. For each one, we have two different sets of plots, graphs of warp amplitudes and graphs of the warp asymmetries against intrinsic parameters of the galaxies. The following parameters are represented:

In Figs. 1 and 2 are represented the relations between the parameters of the warp (amplitude and asymmetry) against: mass-luminosity relation (Figs. 1a and 1e for its relation with the warp amplitude and the warp asymmetry respectively; and 2a and 2e), the total mass (Figs. 1b and 1f; and 2b and 2f), R25 (Figs. 1c and 1g; and 2c and g2), the absolute magnitude in H (Figs. 1d and 1h; and 2d and h2). Finally, Figs. 1i and 2i represent the relation between the warp amplitude and the warp asymmetry. The points represent each galaxy of the sample of Sánchez-Saavedra et al. (1990, 2002) and García-Ruiz (2001). The number of points in each plot depends on the number of available galaxies with information on the two variables represented. The solid line represents the average of the warp amplitude and warp asymmetry respectively along the x axis and was determined with data for the warp amplitude between 3 and 30 for optical data. We try to avoid galaxies with a small warp that might introduce errors in the measurements. In the case of the radio data all the measurements are presented in the average representation. Here, we have calculated the average value (solid line) with warp amplitudes between 0 and 50 for two reasons: there are fewer galaxies at this wavelength and we cannot discard any of them; it is easier to measure the warp in the radio than in the optical bands. In the case of the warp asymmetry graphs, the average value is between 0 and 1. In all cases, ten points along the x axis have been used to fit this value. The total number of galaxies is 228 for the optical data and 26 for the radio data, but sometimes there is no parameter (in H band because 2MASS is not yet complete, the rotational velocity, etc.) for all galaxies (see Tables 1 and 2). In these cases, the figures show a lower number of galaxies. The data displayed in the figures show the following behaviour:

All these relations are subject to the authenticity of the warp characteristics measured by Sánchez-Saavedra et al. (1990, 2002) and García-Ruiz (2001), especially for the visible warps, since these are more likely to be confused with other features (spiral arms, for instance). Nonetheless, the possible contamination, if reasonably small (no more than 20% of the sample), would only introduce some noise in the correlations. Unless most of the data are wrong, it cannot be expected that the present features are caused by this contamination.


   
Table 2: Radio data. Columns in the table represent: name of the galaxy, warp amplitude in the west and east side of the galaxy, redshift, maximum rotation velocity, log(D25), H magnitude and distance.
UGC EAST WA WEST WA cz $V_{\rm rot}$ log D25 $m_{\rm H}$ d
      km/sg km/sg 0.1 arcmin   Mpc
1281 1.22 9.27 157 50 1.65 -- 5.1
2549 2.44 7.69 10355 226 .83 12.2 36.3
3137 5.76 4.71 992 93 1.55 *11.4 33.8
3909 15.48 8.57 945 77 1.37 12.5 24.5
4278 5.06 0.00 560 79 1.66 11.9 8.1
4806 0.00 5.59 1947 158 1.56 *10.9 21.1
5452 31.33 8.22 1342 93 1.38 -- 21.7
5459 5.41 14.23 1112 120 1.66 *10.8 15.9
5986 41.21 8.04 615 109 1.84 10.1 8.5
6126 49.85 33.65 704 83 1.54 11.6 8.8
6283 6.11 10.68 719 88 1.56 10.7 11.3
6964 28.10 36.79 905 120 1.59 10.3 16.9
7089 0.00 0.00 774 57 1.50 8.8 11.6
7090 0.00 0.00 560 149 1.81 *8.9 10.2
7125 10.33 0.00 1071 59 1.64 -- 12.6
7151 0.00 0.00 267 64 1.78 9.9 6.0
7321 4.54 0.00 409 94 1.74 -- 14.9
7483 0.00 0.00 1248 94 1.47 10.9 17.6
7774 64.44 27.16 526 80 1.48 12.5 20.6
8246 30.57 0.00 794 63 1.53 13.4 19.4
8286 8.04 4.01 407 75 1.77 *10.8 8.0
8396 44.31 0.00 945 68 1.23 12.1 27.5
8550 0.00 4.36 364 57 1.48 12.0 13.2
8709 0.00 0.00 2402 194 1.71 9.3 19.8
8711 15.30 29.43 1531 146 1.60 9.4 22.5
9242 0.00 0.00 1436 81 1.68 -- 12.6

The references of each value are: Cols. 1-3 from García-Ruiz (2001), the warp amplitudes are in the same units than optical amplitudes; Cols. 4-6 from García-Ruiz (2001) and LEDA database; Col. 7 from 2MASS and galaxies with (*) Tormen et al. (1995); Col. 8 from García-Ruiz (2001).

   
4 Discussion and conclusions

In our analysis of the correlations between warp characteristics and other parameters of the galaxies we find some trends of correlation or anticorrelation in some cases and nothing in other cases. The number of galaxies is not very large, so possible minor systematic errors in the parameters are not totally discarded, and the dispersion of values is large, so the correlations among the different parameters is not perfect (we have no correlation factor close to 1). In any case, we think that these relations reveal some real characteristics which can be tentatively examined as follows:

Summing up, we think that the correlations analysed here can give us some clues about the predominant mechanism for the formation of warps in spiral galaxies. At present, the data seem to indicate that the role of the halo is important only in making S-warps at R<R25 more symmetric, and that asymmetries are more important in less warped galaxies. This favours scenarios in which the halo is not very important in the formation of S-warps, especially radio S-warps and is in agreement with theories that identify the origin of the warps as directly related to external (intergalactic) factors without the mediation of the halo. The origin of the asymmetries in the warps might be different from the mechanism of S-warps, and in such a case the halo could play a role, only in the inner region.

In the introduction, we have described four different theories to explain the formation of warps. The present results cannot give a definitive answer about which is the correct one. Our goal in the present paper is just to present observational results, not to defend or deny a particular theory. As a consequence of these results, a few words can be added to the comparisons between theories and observations:

These are just attempted interpretations in the light of the present results. It is also possible that several mechanisms can be present in the warp formation at the same time. With further data for more galaxies, at higher resolution, and with a more detailed theoretical analysis of the different hypotheses to fit the observations, these results and interpretations can be corroborated and/or improved. New work with optical, infrared and radio data could be very useful for confirming the present trend and to reduce the dispersion of values.

Acknowledgements
Thanks are given to Victor P. Debattista and A. Guijarro. This article makes use of data products from 2MASS, which is a joint project of the Univ. of Massachusetts and the Infrared Processing and Analysis Center, funded by the NASA and the NSF. This work has been supported by "Cajacanarias" (Canary Islands, Spain) and the project AYA2000-2046-Co2-02 of the spanish MCYT.

References

 


Copyright ESO 2002