next previous
Up: Interstellar turbulent velocity fields: chemistry


  
Appendix C: 2D log-normal cascade

For any function \( f\in L_{\rm per}^{2}([0,L]^{2}) \), f can be written under the form

\begin{displaymath}f(x,y)=\sum ^{N}_{j=0}~ \sum ^{2^{N-j}-1}_{m,n=0}~ \sum ^{3}_{k=0}c_{j,m,n}^{k}\psi _{j,m,n}^{k}(x,y).\end{displaymath}

The construction rule is the following: one generates the modulus \( d_{j,m,n}=\left( \left[ c_{j,m,n}^{1}\right] ^{2}+\left[ c^{2}_{j,m,n}\right] ^{2}+\left[ c^{3}_{j,m,n}\right] ^{2}\right) ^{1/2} \)of the wavelet coefficients in a recursive way by:

\begin{displaymath}\left\{ \begin{array}{lcr}
d_{j-1,2m,2n} & = & M^{(1)}_{j,m,n...
...,2m+1,2n+1} & = & M^{(4)}_{j,m,n}d_{j,m,n}.
\end{array}\right. \end{displaymath}

Mj,m,n follows the prescribed log-normal law \( (m,\sigma ) \).

The wavelet coefficients themselves are computed via two angles \( (\theta,~\phi ) \):

\begin{displaymath}\left\{ \begin{array}{lcl}
c^{1}_{j,m,n} & = & \cos(\phi )\co...
...m]
c^{3}_{j,m,n} & = & \sin(\phi )d_{j,m,n}
\end{array}\right. \end{displaymath}

where \( \theta \) is randomly chosen between \( [-\pi,~\pi ] \)and \( \phi \) is randomly chosen between \( \left[ -\phi ^{*},\phi ^{*}\right] \)where \( \phi ^{*} \)satisfies

\begin{displaymath}\frac{\sin \left( 2\phi ^{*}\right) }{4\phi ^{*}}=\frac{2^{\tau (2)/2+3}}{1+2^{\tau (2)/2+3}}-\frac{1}{2}\end{displaymath}

with

\begin{displaymath}\tau (q)=-\frac{\sigma ^{2}}{2}q^{2}-mq-2.\end{displaymath}

Finally, isotropy follows from adjusting the weights at the largest scale:

c10,0,0 = d0,0,0, c20,0,0 = d0,0,0, and $c^{3}_{0,0,0} = 2^{-(\tau (2)/4+1)}d_{0,0,0}$ (see Decoster et al. 2000 for all details).


next previous
Up: Interstellar turbulent velocity fields: chemistry

Copyright ESO 2002