next previous
Up: The B3-VLA CSS sample


1 Introduction

The population of CSSs (Compact Steep-spectrum Sources) & GPSs (GHz Peaked-spectrum Sources) (see O'Dea, 1998 for a review) has received recently an increasing attention as at least the two sided (or symmetric) objects of this class are considered to be the young stage in the radio source evolution (Fanti et al. 1995; Readhead et al. 1996), from the Compact (CSO, size <1 h-1kpc)[*] through the Medium (MSO, 1 h-1 kpc < size < 20 h-1 kpc) to the Large Symmetric Object (LSO, size > 20 h-1 kpc). A strong support for this interpretation comes from the large expansion velocities recently measured in a handful of sub-kpc sources (see compilation in Fanti 2000 and references therein) and from the determination of the radiative ages of a larger number of CSSs spanning a range of linear size from sub-kpc to $\sim $20 h-1 kpc (Murgia et al. 1999).

Starting from the seminal paper by Baldwin 1982, models for radio source evolution have been presented by several authors which link the CSS/GPS population to the larger size sources, (see e.g. Begelman 1996; Kaiser & Alexander 1997).

All models essentially predict a decrease of the source luminosity with time, and therefore with increasing source linear size. A key test for the models is the ability to reproduce the distribution of sources in the "Radio Power - Linear Size" ( $P_{\rm R} - LS$) plane (Baldwin 1982). CSSs/GPSs seem to be in the right proportion as compared with model expectations (Fanti et al. 1995; Readhead et al. 1996). However, from the samples studied so far the statistics have been not very large and suspicions were raised on some "irregularities" in the LS distribution (O'Dea & Baum 1997) and on the, perhaps too high, number of very small size CSSs, the GPSs (Polatidis et al. 1999; Fanti & Fanti 2001).

Recently we have selected a new sample of CSSs from the B3-VLA catalogue (Vigotti et al. 1989) aimed at increasing significantly the statistics on sources with LS in the range $0.4~h^{-1} \leq LS$(kpc) $ \leq 20~h^{-1}$ (Fanti et al. 2001, hereafter referred to as Paper I). This sample, consisting of 87 CSSs ( $LS \leq 20~h^{-1}$ kpc), has VLA observations at 1.4 GHz (A and C configurations), 5 and 8.4 GHz (both A configuration). About 50% of these sources were not resolved or were poorly resolved even at 8.4 GHz (beam size $\sim $0.2$\arcsec$). For them two VLBI observing projects were undertaken with the VLBA and EVN & MERLIN.

This paper reports on the results of the VLBA observations of the most compact sources. The EVN & MERLIN observations instead are presented in a companion paper by Dallacasa et al. (2002, Paper III).


 

 
Table 1: The VLBA sample: see text for a description of the columns.
Source Id mR z    LAS Log $P_{0.4 \rm GHz}$   $S_{1.67}^{\rm VLA}$    $S_{1.67}^{\rm VLBA}$ $LAS_{\rm VLBA}$ LLS   Morph.
         mas W/Hz h-2 mJy mJy mas     kpc h-1  
    (1) (2) (3)   (4)  (5)  (6) (7)   (8)   (9)      (10)   (11)
0039+373 G   1.006 100 27.37 784 779 120     0.50 CSO
0147+400 E     100 >26.6 631 563 95     $\sim $0.40 scJ?$^\ddag $
0703+468 E     80 >26.6 1392 1356 75     $\sim $0.32 CSO
0800+472 $\ast$ E     1000 >26.8 769 447 160     $\sim $0.67 scJ?$^\ddag $
0809+404 $\ast$ G   0.551 1200 26.90 929 522 80     0.28   ?
0822+394 G   1.180 50 27.33 1003 942 70     0.30 CSO
0840+424A E     80 >26.8 1243 1187 135     $\sim $0.57 CSO
1007+422 $\ast$ E     130 >26.4 370 313 265     $\sim $1.12 MSO
1008+423 E     50 >26.5 521 498 115     $\sim $0.48 CSO
1016+443 G 19.7 0.33  R 110 26.11 287 266 155     0.44 CSO
1044+454 $\ast$ G 24.8 4.10  K 1000 28.82 352 311 175     0.55   ?
1049+384 $\ast$ G 20.9 1.018 100 27.14 574 502 210     0.89 CSO?
1133+432 E     70 >26.3 1247 1265 45      $\sim $0.20 CSO
1136+383 $\ast$ E     50 >26.4 400 377 70     $\sim $0.28 CSO
1136+420 G 21.7 0.829 1000 a 26.9 402 279 120     0.49   ?
1159+395 G 23.4 2.370 50 27.57 535 498 70     0.26 CSO
1225+442 G 18.2 0.22  R 200 27.50 316 291 420     0.95 CSO
1242+410 Q 19.7 0.811 40 27.08 1215 1126 70     0.29 CSO?
1314+453A$\ast$ G 21.8 1.544 160 27.77 574 493 185     0.79 CSO
1340+439 E     70 >26.5 447 397 130     $\sim $0.56 CSO
1343+386 $\ast$ Q 17.5 1.844 110 27.70 793 717 130     0.54 CSO
1432+428B$\ast$ E     40 >26.3 809 706 50     $\sim $0.21 CSO
1441+409 E     100 >26.7 834 768 130     $\sim $0.56 CSO
1449+421 E     80 >26.9 639 592 120     $\sim $0.50 CSO
2304+377 G 19.7 0.40  R 100 26.44 1299 1217 150     0.49 CSO
2330+402 E     70 >26.7 730 705 100     $\sim $0.43 CSO
2348+450 $\ast$ G   0.978 200 27.36 630 520 310     1.32 MSO
2358+406 E     80 >26.8 1159 1161 120     $\sim $0.47 CSO
a The value given in Fanti et al. (2001) is wrong.

$^\ddag $ Steep-core Jet: elongated structure, very asymmetric in brightness, where the brightest component
   is at one source extremity and has a steep spectrum.



  \begin{figure}
\par\includegraphics[width=8.8cm,clip]{h3442f1.ps}\end{figure} Figure 1: Typical uv coverage.


next previous
Up: The B3-VLA CSS sample

Copyright ESO 2002