A&A 386, 1055-1073 (2002)
DOI: 10.1051/0004-6361:20020168
B. Larsson1 - R. Liseau1 - A. B. Men'shchikov1,2
1 - Stockholm Observatory, SCFAB, Roslagstullsbacken 21, 106 91 Stockholm, Sweden
2 -
Max-Planck-Institut für Radioastronomie, Auf dem Hügel, Bonn, Germany
Received 30 November 2001 / Accepted 29 January 2002
Abstract
We present spectrophotometric ISO imaging with the LWS and the CAM-CVF of the Serpens molecular cloud core.
The LWS map is centred on the far infrared and submillimetre source FIRS 1/SMM 1
and its size is 8
8
.
The fine structure line emission in [O I] 63
m and [C II] 157
m is extended on the arcminute scale
and can be successfully modelled to originate in a PDR with
and
n(H2) in the range of (104-105) cm-3. Extended emission might also be
observed in the rotational line emission of H2O and high-J CO. However, lack of
sufficient angular resolution prevents us from excluding the possibility that the
emssion regions of these lines are point like, which could be linked to the embedded
objects SMM 9/S 68 and SMM 4.
Toward the Class 0 source SMM 1, the LWS observations reveal, in addition
to fine structure line emission, a rich spectrum of molecular lines, superposed
onto a strong, optically thick dust continuum (Larsson et al. 2000). The sub-thermally
excited and optically thick CO, H2O and OH lines are tracing an about
103 AU source with temperatures higher than 300 K and densities above
106 cm-3 (M=0.01
). The molecular abundances,
(H2), are
for CO, H2O, OH and 13CO, respectively.
Our data are consistent with an ortho-to-para ratio of 3 for H2O.
OH appears highly overabundant, which we tentatively ascribe to an enhanced (X-ray) ionisation
rate in the
(
). We show that geometry is of concern
for the correct interpretation of the data and
based on 2D-radiative transfer modelling of the disk/torus around SMM 1, which successfully
reproduces the entire observed SED and the observed line profiles of low-to-mid-JCO isotopomers, we can exclude the disk to be the source of the LWS-molecular line emission.
The same conclusion applies to models of dynamical collapse ("inside-out'' infall).
The 6
pixel resolution of the CAM-CVF permits us to see that the region
of rotational H2 emission is offset from SMM 1 by 30
,
at position
angle 340
,
which is along the known jet flow from the Class 0 object. This H2 gas is extinguished by
= 4.5 mag and at a temperature of 103 K, which
suggests that the heating of the gas is achieved through relatively slow shocks.
Although we are not able to establish any firm conclusion regarding the detailed
nature of the shock waves, our observations of the molecular line emission from SMM 1
are to a limited extent explainable in terms of an admixture of J-shocks and of C-shocks,
the latter with speeds of about (15-20) km s-1, whereas dynamical infall is not directly revealed by our data.
Key words: ISM: individual objects:
,
FIRS 1/SMM 1 - ISM: abundances - ISM: molecules - ISM: clouds - ISM: jets and outflows - stars: formation
The Serpens dark cloud is currently forming a dense cluster
of low to intermediate mass stars (Strom et al. 1976; Kaas 1999). This star forming complex
is situated in the inner Galaxy, not very far from the direction toward the Galactic Centre
(
= 32
). At the distance of 310 pc (de Lara et al. 1991), the
is only 30 pc from the nominal galactic plane, i.e. well within the scale height of the
molecular gas of about 80 pc (Dame et al. 1987). Not totally unexpected,
IRAS-observations revealed intense and patchy far infrared (FIR) emission on a sloping background.
Earlier observations had discovered discrete FIR sources of relatively low luminosity
(Nordh et al. 1982; Harvey et al. 1984).
The empirical classification scheme developed by Lada & Wilking (1984), and later
extended by André et al. (1993), is based on the Spectral Energy Distribution (SED)
of the young stellar objects. In a previous paper (Larsson et al. 2000), we were discussing
the SEDs of the submm-sources in the
and for the dominating source, SMM 1
(also known as Serpens FIRS 1; Harvey et al. 1984),
we reached the conclusion that its SED classifies it as Class 0. The existence of a circumstellar disk
has been announced by Brown et al. (2000). An immediate question is then, whether SMM 1 shows any
detectable or deducable spectroscopic evidence of disk accretion and/or of dynamical infall.
Over a 0.2 pc (about 2
)
region toward the
,
Williams & Myers (2000) reported signs of infall.
Observations toward SMM 1 of molecular line profiles (Mardones et al. 1997 and Gregersen et al. 1997),
have not so far been able to reveal a clear "collapse signature''. This is possibly because of confusion with
the known mass outflow activity of the source (Rodríguez et al. 1989; Eiroa et al. 1992;
McMullin et al. 1994; White et al. 1995; Davis et al. 1999; Williams & Myers 2000; Testi et al. 2000)
and/or different velocity components in the cloud complex.
On the other hand, Hogerheijde et al. (1999) found, from continuum interferometric observations,
the density profile of the source to be consistent with the theoretical expectation of a collapsing cloud.
The earlier molecular line results were based on observations of low excitation transitions, which
are not particularly (or not all) sensitive to the conditions expected to prevail in the deeper
layers of the source. In this paper, we present spectral line data of the
,
both for
a spatial map and for pointed deep integrations, which contain lines also of very high excitation.
These are potentially better suited to "penetrate'' to regions which were previously hidden from view.
Our interpretation of the results will especially focus on the evolution of this star forming complex.
In Sect. 2, we reiterate the LWS observations and a summary is given for the data reductions, whereas a more detailed account is provided in Appendix A. The resulting line spectra are presented in Sect. 3. These results are discussed at some depth in Sect. 4. We first exploit relatively simple analytical methods, which result in spatially averaged properties. These should be useful to limit the parameter space for more sophisticated numerical modelling. This is done for the transfer of both continuum and line radiation, and these models lead to some valuable conclusions. In a summarising discussion, we make an attempt to bring these various pieces of information into a coherent physical picture. Finally in Sect. 5, we summarise our main conclusions from this work.
A
spectrophotometric map in the far-infrared (FIR) of the
was obtained with the
Long-Wavelength Spectrometer (LWS; 43-197
m,
-330)
on board the Infrared Space Observatory (ISO) on October 21, 1996.
The ISO-project is described by Kessler et al. (1996) and
the LWS is described by Clegg et al. (1996) and Swinyard et al. (1996).
The formal map centre, viz.
= 18
29
50
29 and
= 1
15
18
6,
epoch J 2000, coincides to within 10
with the position of the
sub-millimetre source SMM 1. The pointing accuracy in the map is determined as 1
(rms).
The spacings between positions in the map, oriented along the equatorial coordinates, are
100
.
The size of the LWS-map is 8
8
,
corresponding to
D3102 pc2, where D310 denotes the distance
to the
in units of 310 pc.
At each map-point the grating of the LWS was scanned 6 times in fast mode, oversampling the spectral resolution at twice the Nyquist rate. Each position was observed for nearly 15 min. The centre position was re-observed half a year later on April 15, 1997, for a considerably longer integration time (24 spectral scans).
In addition, imaging spectrophotometric data obtained with the Continuous Variable Filter
(CVF; 5-16.5 m,
pxl, pixel-FOV = 6
,
35) of ISO-CAM (Cesarsky et al. 1996) were also analysed. The detailed observing log is given in our
previous paper (Larsson et al. 2000).
The LWS data reductions were done with the interactive analysis package LIA. This pipeline processing was done in two ways. For the long wave detectors LW 1-LW 5, the Relative Spectral Response Functions (RSRFs) of the most recent version (OLP 10) provided an overall better agreement than the older OLP 8 for the detector inter-calibration. However, the OLP 10 RSRFs also contained a number of strong features, which resulted in spurious "lines'' in the reduced spectra (Appendix A). We decided therefore to use the RSRFs of OLP 8, which did not show this behaviour, but scaled to the OLP 10 absolute levels. For the short-wave detectors SW 1-SW 5, no such difference between OLP 8 and OLP 10 was apparent and consequently we used the latest version. A detailed account for the first steps in the LWS reduction is given in Appendix A.
Subsequent post-pipeline processing used the package ISAP.
At each position, the individual LWS scans for each of the 10 detectors were
examined, "deglitched'' and averaged. Corrections were applied to the
"fringed'' spectra in the map. The fringing indicates that the emission is
extended and/or that point sources were not on the optical axis of the LWS, i.e.
the radial distance from the optical axis was typically larger than about 25
.
The absolute flux calibration is better than about 30% (Swinyard et al. 1996).
Overlapping spectral regions of adjacent detectors were generally within 10%
("detector stitching'' uncertainty). At 60 m and 100
m, the correspondance with
broad-band IRAS data is even better than 10% (Larsson et al. 2000).
The ISO-CAM data were reduced with the CIA programs using OLP 8.4. This included dark current
correction, transient correction and deglitching and flat field corrections. The calibrations
were based on OLP 5.4. The proper alignment of the CVF fields was achieved with the aid of
point sources identified in both CVF and broad-band (7 m and 14
m) CAM observations
(Fig. 1).
![]() |
Figure 1:
The from CVF frames synthesised images at 7 ![]() ![]() |
Open with DEXTER |
Lines from purely rotationally excited H2 are clearly discernible in the CVF-image.
In particular, all lines which fall in the observed spectral range, were detected and,
in Table 1, their observed fluxes are listed. These refer to
the 3 para-H2 lines 0-0 S(2) 12.3, S(4) 8.0 and S(6) 6.1 m and the 3
ortho-H2 lines 0-0 S(3) 9.7, S(5) 6.9 and S(7) 5.5
m.
Figure 2 shows maps near SMM 1 in these six lines, delineating the spatial distribution
of the rotationally excited H2 gas along the known jet-flow from SMM 1
(Eiroa & Casali 1989; Hodapp 1999). In addition, somewhat weaker H2 emission is also observed
near SMM 3, the discussion of which will be postponed to a future paper.
Transition | Peak
![]() |
Total
![]() |
(10-21 W cm-2) | (10-20 W cm-2) | |
0-0 S(2) |
![]() |
![]() |
0-0 S(3) |
![]() |
![]() |
0-0 S(4) |
![]() |
![]() |
0-0 S(5) |
![]() |
![]() |
0-0 S(6) |
![]() |
![]() |
0-0 S(7) |
![]() |
![]() |
1-0 S(1)![]() |
2.5 | 1.0 |
Notes to the table: ![]() ![]() ![]() |
![]() |
Figure 2:
CVF images toward SMM 1 in 3 ortho-H2 (upper frames) and 3 para-H2 (lower row) lines. Offsets are in arcsec and relative to the centre position (0, 0) of the LWS map. The white arcs outline the FWHM contour of the LWS beam (70
![]() ![]() |
Open with DEXTER |
Within the
map observed with the LWS, the spatial distribution
of the fine structure lines [O I] 63
m and [C II] 157
m is shown in Fig. 3 together with that of
the rotational lines of H2O (
212-101) (connecting to the ground state) and CO (J=14-13)
(lowest J-transition admitted and close in wavelength to the H2O line).
![]() |
Figure 3:
Maps of integrated line fluxes of [O I] 63 ![]() ![]() |
Open with DEXTER |
Like the emission in [C II] 157 m, [O I] 63
m emission is observed in each position of our map, but with
maximum intensity at the position of SMM 1. Secondary maxima
are also seen along a ridge toward SMM 4/3/8 in the southeast-to-east. In addition, the emission is
extended toward SMM 9/S 68 NW. The overall [O I] 63
m distribution is strikingly similar to that seen
in the mm-regime in a variety of high density tracing molecules (McMullin et al. 2000).
Very interesting is also the fact that, just in the northwest corner of the map, the shocked flow
HH 460 (Davis et al. 1999; Ziener & Eislöffel 1999) seems to be discernible.
In [C II] 157 m, maximum emission is seen toward S 68 (Sharpless 1959) and the cluster in the southeast, whereas
SMM 1 is inconspicuous in this map. To some extent, the [C II] 157
m-map is an inverted image of that
seen in [O I] 63
m.
The molecular emision in the 179.5 m line of ortho-H2O and in the 186
m line of CO
is strongest toward SMM 1, but displays also some extensions along the [O I] 63
m ridge, i.e.
toward the northwest and the southeast. The spatial resolution is not sufficient, however,
to decide whether this emission is extended or due to the numerous SMM-sources in the region
(cf. Fig. 3).
The continuum subtracted line spectrum of SMM 1 from 43 to 197 m is displayed in
Fig. 4, revealing
a plethora of emission lines from both atomic and molecular species. In the figure, also the
wavelength coverage of the ten individual LWS detectors is indicated (cf. Sect. 2.2).
The identification of the lines and their parameters, as obtained from profile fitting,
are listed in Tables 2 to 5. Listed are the identified species, the upper and lower states
and the rest wavelength of the transition. This is followed by the observed wavelength with the
measurement error and the difference between the observed and the rest wavelength. Then the line width and
the line flux with fitting-errors, respectively, are tabulated and the error estimate for the line flux,
i.e.
where
is the fitting error and
is the rms-level of the surrounding continuum integrated over one spectral resolution element.
In the last two columns, the type of the Gauss fitting (single or multiple component) and the LWS detector are given.
![]() |
Figure 4:
The LWS spectrum (43 to 197 ![]() ![]() ![]() |
Open with DEXTER |
Out of a total of 8 measured CO lines, clear detections are found for 7 transitions. In addition, we identfy 5 (possibly 8) lines of ortho-H2O, and 1 (possibly 2) of para-H2O. Further, 4 lines of OH are clearly present in the spectrum, whereas for two more lines this status is less clear. Aside from the line emission from molecules, lines from O0 and C+ are also present. Possible implications from these results will be discussed in the following sections.
Ion id | Transition | Wavelength | Flux ![]() |
Single/ | LWS | ||||
(![]() |
(W cm-2) | Multi | Detector | ||||||
![]() |
![]() |
![]() |
![]() |
F | ![]() |
fit | |||
[CII] | 2P3/2-2P1/2 | 157.74 | 157.72 ![]() |
-0.02 | 0.46 ![]() |
2.07 ![]() |
0.35 | S | LW 4 |
157.72 ![]() |
-0.02 | 0.60 Fix | 2.31 ![]() |
0.34 | S | LW 4 | |||
[OI] | 3P0-3P1 | 145.53 | 145.53 Fix | +0.00 | 0.60 Fix | 0.37 ![]() |
0.90 | M | LW 4 |
145.53 Fix | +0.00 | 0.60 Fix | 0.76 ![]() |
0.89 | M | LW 3 | |||
3P1-3P2 | 63.18 | 63.19 ![]() |
+0.01 | 0.27 ![]() |
9.5 ![]() |
0.74 | S | SW 3 | |
63.19 ![]() |
+0.01 | 0.29 Fix | 9.8 ![]() |
0.46 | S | SW 3 | |||
63.17 ![]() |
-0.01 | 0.28 ![]() |
10.3 ![]() |
0.96 | S | SW 2 | |||
63.17 ![]() |
-0.01 | 0.29 Fix | 10.5 ![]() |
0.60 | S | SW 2 | |||
[NII] | 3P2-3P1 | 121.90 | 0.29 | S | LW 2 | ||||
[OIII] | 3P1-3P0 | 88.36 | 0.47 | S | LW 1 | ||||
0.32 | S | SW 5 | |||||||
3P2-3P1 | 51.82 | 0.73 | S | SW 2 |
Notes to the table: ![]() ![]() ![]() ![]() ![]() |
Transition | Wavelength | Width | Flux ![]() |
Err ![]() |
Single/ | LWS | ||
(![]() |
(![]() |
(W cm-2) | (W cm-2) | Multi | Detector | |||
![]() |
![]() |
![]() |
![]() |
F | ![]() |
fit | ||
ortho-H2O | ||||||||
221-212 | 180.49 | 180.49 ![]() |
+0.00 | 0.45 ![]() |
0.53 ![]() |
0.24 | S | LW 5 |
180.49 ![]() |
+0.00 | 0.60 Fix | 0.60 ![]() |
0.23 | S | LW 5 | ||
212-101 | 179.53 | 179.55 ![]() |
+0.02 | 0.57 ![]() |
1.40 ![]() |
0.32 | S | LW 5 |
179.55 ![]() |
+0.02 | 0.60 Fix | 1.43 ![]() |
0.25 | S | LW 5 | ||
303-212 | 174.63 | 174.63 ![]() |
+0.00 | 0.70 ![]() |
2.15 ![]() |
0.33 | S | LW 5 |
174.63 ![]() |
+0.00 | 0.60 Fix | 1.97 ![]() |
0.26 | S | LW 5 | ||
174.63 ![]() |
+0.00 | 0.60 Fix | 1.93 ![]() |
0.71 | M | LW 5 | ||
330-321 | 136.49 | 136.52 ![]() |
+0.03 | 0.64 ![]() |
0.85 ![]() |
0.48 | S | LW 3 |
136.51 ![]() |
+0.02 | 0.60 Fix | 0.81 ![]() |
0.35 | S | LW 3 | ||
136.51 Fix | +0.02 | 0.60 Fix | 0.77 ![]() |
0.88 | M | LW 3 | ||
414-303 | 113.54 | 113.54 ![]() |
+0.00 | 0.61 ![]() |
2.96 ![]() |
0.52 | S | LW 2 |
113.54 ![]() |
+0.00 | 0.60 Fix | 2.93 ![]() |
0.41 | S | LW 2 | ||
221-110 | 108.07 | 108.13 ![]() |
+0.06 | 0.39 ![]() |
1.29 ![]() |
0.50 | S | LW 2 |
108.18 ![]() |
+0.11 | 0.60 Fix | 1.58 ![]() |
0.45 | S | LW 2 | ||
107.83 ![]() |
-0.25 | 0.51 ![]() |
1.60 ![]() |
0.52 | S | LW 1 | ||
107.84 ![]() |
-0.24 | 0.60 Fix | 1.79 ![]() |
0.51 | S | LW 1 | ||
321-212 | 75.38 | 75.40 ![]() |
+0.02 | 0.29 ![]() |
2.05 ![]() |
0.60 | S | SW 4 |
75.40 ![]() |
+0.02 | 0.29 Fix | 2.03 ![]() |
0.42 | S | SW 4 | ||
441-330 | 49.34 | 49.32 ![]() |
-0.02 | 0.25 ![]() |
1.69 ![]() |
0.37 | S | SW 1 |
49.32 ![]() |
-0.02 | 0.29 Fix | 1.81 ![]() |
0.29 | M | SW 1 | ||
para-H2O | ||||||||
220-111 | 100.98 | 100.66 ![]() |
-0.32 | 0.57 ![]() |
2.53 ![]() |
0.82 | S | LW 1 |
100.66 ![]() |
-0.32 | 0.60 Fix | 2.60 ![]() |
0.58 | S | LW 1 | ||
322-211 | 89.99 | 89.99 ![]() |
+0.00 | 0.44 ![]() |
2.71 ![]() |
0.83 | S | SW 4 |
90.01 ![]() |
+0.02 | 0.29 Fix | 2.02 ![]() |
0.53 | S | SW 4 |
As is evident from Table 2, only upper limits were obtained for the high ionisation lines
[O III] 53 m, [O III] 88
m and [N II] 122
m. This is consistent with the luminosities derived by
Larsson et al. (2000), indicating the presence of stellar sources generating at best only gentle UV-fields.
We can also exclude the presence of extended strongly shocked regions. For instance,
if associated with the fast moving objects of Rodríguez et al. (1989),
our data imply that the physical scales of these shocks would be small,
1
(e.g. for
200 km s-1 and
n0
105 cm-3; see: Cameron & Liseau 1990; Liseau et al. 1996a).
We can conclude that the degree of ionisation of the atomic gas is generally low. Lines of low-ionisation species will be discussed in the next sections.
The spatial distribution of the [C II] 157 m emission is shown in Fig. 3
from which it is evident that the emission varies within a factor of about two.
The S 68 nebulosity is pronounced in the [C II] 157
m line, making it likely
that its origin is from a photondominated region (PDR), close to the cloud surface.
This idea can be tested quantitatively by invoking also the observed [O I] 63 m emission.
The LWS subtends a solid angle
sr. Disregarding for
a moment the peak emission (see below), we find for unit beam
filling the line intensities
erg cm-2 s-1 sr-1 and
erg cm-2 s-1 sr-1, respectively. Hence, the line ratio [O I] 63
m/[C II] 157
m is about 0.5 (Fig. 5). These data are consistent with PDR-emission,
where an interstellar radiation field about 10 times as intense as that of the solar
neighbourhood, i.e.
,
is impinging on the outer layers of a cloud with densities
in the range
= (0.1-1)
cm-3 (cf. Figs. 4 and 5 of Liseau et al. 1999).
This estimate of the strength of the UV field is in reasonable agreement with the FIR-background
measured by IRAS and ISO (Larsson et al. 2000), which would imply G0 = 5-25.
In the advocated PDR model, the [O I] 145
m line is fainter by two orders of magnitude than the
[O I] 63
m line. The observed line ratio, [O I] 63
m/[O I] 145
m > 12, is clearly consistent
with this prediction. Finally, no detectable emission from higher ionisation stages would be
expected. The PDR model would offer therefore a satisfactory explanation for the observed
fine structure line distribution over the map.
If this PDR emission is treated as a large scale background
and subtracted from the maps, the resulting line ratio toward the peak (SMM 1) increases dramatically,
viz. to [O I] 63 m/[C II] 157
m
.
Such large ratios are generally not predicted by PDR models
but are a common feature of J-shocks (Hollenbach & McKee 1989). The residual [O I] 63
m flux corresponds to an observed intensity
erg cm-2 s-1 sr-1, more than two orders of magnitude below that of J-shock models (see Sect. 4.1.3). Interpreted as a beam filling effect, this would imply the size of the shocked regions to be about 4
to 5
.
![]() |
Figure 5:
Emission line intensity ratio map for [O I] 63 ![]() ![]() |
Open with DEXTER |
Toward the interstellar shock, HH 460, the [O I] 63 m flux is not conspicuously larger
than that of [C II] 157
m, as one might naively expect for shock excitation, and we cannot
exclude the possibility that the spatial coincidence with the [O I] 63
m emission spot
is merely accidental. However, pursuing the shock idea we find that,
for the previously inferred cloud densities,
105 cm-3,
the [O I] 63
m intensity is roughly constant with the shock speed
(a few times 10-2 erg cm-2 s-1 sr-1; Hollenbach & McKee 1989).
These J-shock models do also predict that the accompanying [O I] 145
m emission
would not be detectable in our observations and that any [C II] 157
m contribution would be
totally insignificant.
The observed line intensity is
erg cm-2 s-1 sr-1 which,
if due to shock excitation, would indicate that the source fills merely a tiny
fraction of the LWS-beam (beam dilution of
). A size of about 1
for the [O I] 63
m emitting regions of the HH object would thus be implied,
which is comparable to the dimension of the dominating, point-like, optical knot HH 460 A.
From the observed line flux, a current mass loss rate from the HH-exciting source
of M
would be indicated (Hollenbach 1985;
Liseau et al. 1997), which is at the 3% level of the mass accretion rate in
the
(Sect. 4.4).
Based on the L63-
calibration by Liseau et al. (1997),
one would predict that the luminosity of the central source is slightly less than 0.5
.
No detailed information about the exciting source of HH 460 is available, though.
Based entirely on morphological arguments, Ziener & Eislöffel (1999) associate HH 460 with
SMM 1, and Davis et al. (1999) either with SMM 1 or with SMM 9/S 68N. The inferred luminosities
of these objects, 71
and 16
,
respectively (Larsson et al. 2000), are however
much larger than that inferred for the putative source driving HH 460. Evidently,
the present status regarding the identification of the driving source of HH 460 is inconclusive.
Proper motion and radial velocity data would be helpful in this context.
We can directly dismiss the PDR of Sect. 4.1.2 as responsible for the molecular line emission observed with the LWS, since gas densities and kinetic temperatures are far too low for any significant excitation of these transitions. Shock excitation would be an obvious option. In the following, we will examine the line spectra of H2, CO, H2O and OH.
![]() |
Wavelength | Flux ![]() |
Err ![]() |
Single/ | LWS | ||||
(![]() |
(W cm-2) | (W cm-2) | Multi | Detector | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
F | ![]() |
fit | |
![]() |
![]() |
163.26 | 163.26 Fix | +0.00 | 0.60 Fix | 1.39 ![]() |
0.93 | S | LW 5 |
163.26 Fix | +0.00 | 0.60 Fix | 1.00 ![]() |
0.91 | S | LW 4 | |||
![]() |
![]() |
119.34 | 119.38 ![]() |
+0.04 | 1.31 ![]() |
2.07 ![]() |
0.56 | S | LW 2 |
119.42 ![]() |
+0.08 | 0.60 Fix | 1.28 ![]() |
0.36 | S | LW 2 | |||
![]() |
![]() |
84.51 | 84.43 ![]() |
-0.08 | 0.39 ![]() |
2.94 ![]() |
0.79 | S | LW 1 |
84.44 ![]() |
-0.07 | 0.60 Fix | 3.49 ![]() |
0.87 | S | LW 1 | |||
84.51 ![]() |
+0.00 | 0.41 ![]() |
4.02 ![]() |
0.58 | S | SW 5 | |||
84.50 ![]() |
-0.01 | 0.29 Fix | 3.26 ![]() |
0.42 | S | SW 5 | |||
![]() |
![]() |
79.15 | 79.14 ![]() |
-0.01 | 0.29 ![]() |
2.84 ![]() |
0.54 | S | SW 5 |
79.14 ![]() |
-0.01 | 0.29 Fix | 2.86 ![]() |
0.43 | S | SW 5 | |||
79.17 ![]() |
+0.02 | 0.56 ![]() |
2.22 ![]() |
0.89 | S | SW 4 | |||
79.14 ![]() |
-0.01 | 0.29 Fix | 1.47 ![]() |
0.51 | S | SW 4 | |||
![]() |
![]() |
65.21 | 65.18 ![]() |
-0.03 | 0.24 ![]() |
1.51 ![]() |
0.47 | S | SW 3 |
65.18 ![]() |
-0.03 | 0.29 Fix | 1.64 ![]() |
0.30 | S | SW 3 | |||
![]() |
![]() |
53.30 | 0.73 | S | SW 2 |
The analytical technique known as "rotation diagram'' analysis is relatively simple and easy to apply to wavelength integrated molecular rotational line data. The advantages and the shortcomings of this analysis tool have been thoroughly discussed by Goldsmith & Langer (1999).
Assuming the lines to be optically thin and to be formed in Local Thermodynamic Equilibrium
(LTE), one can derive the equation of a straight line for the molecular column density as a function
of the upper level energy in temperature units. The slope of this line is the reciprocal
excitation temperature of the levels (which in LTE is the same for all levels
and equals the kinetic gas temperature), viz.
![]() |
(1) |
![]() |
(2) |
To obtain a consistent result, the H2 data need to be corrected for the foreground extinction.
Using the data of Ossenkopf & Henning (1994; model for thin ice coating, n =105 cm-3, t=105 yr),
an extinction correction of = 4.5 mag
resulted in a total column density of warm H2 gas of
cm-2.
The rotation temperature is
K and an ortho-to-para ratio (nuclear spin state
population) of o/p = 3 is consistent with these data.
![]() |
Figure 6: Rotation diagram for the ortho-H2 (filled symbols) and para-H2 (open symbols and upper limit) lines observed toward the flow from SMM 1. A linear regression fit to extinction corrected data is shown by the full drawn line. The physical parameters with their formal errors are given in the figure (see also the text). |
Open with DEXTER |
![]() |
Figure 7:
Rotation diagram for the CO lines observed with the LWS (diamonds, this work) and for
ground based data (filled circles), taken from Davis et al. (1999), Hogerheijde et al. (1999)
and White et al. (1995). More than one LWS-value for the same upper energy
![]() |
Open with DEXTER |
In Fig. 7, ground-based CO data from the literature were added for lower lying transitions.
Evidently, the high-Jdistribution appears markedly different from that of the low-J lines. If these latter lines
were truly optically thin, they could originate in extended cloud gas, where
K, of column density
cm-2.
Seemingly in contrast, the LWS data identify gas at
a characteristic temperature of
K, with an
LTE-column density of
cm-2.
These results are based on ad hoc assumptions, i.e. that of unit beam filling and of low optical depth in the lines, potentially underestimating the column densities, and that the level populations are distributed according to their LTE values. LTE may be a reasonably good assumption for the low-J lines. Regarding CO, it is however questionable to what extent these are optically thin. On the other hand, low opacity may come close to the truth for the high-J lines, but LTE is not at all guaranteed a priori for these transitions. Obviously, one needs to check how well these assumptions are justified. In the next sections, this will be addressed by employing first a method based on the Sobolev approximation and then a full Monte Carlo calculation, including gradients for both density and temperature. The latter method takes any (previously neglected) beam dilution effects directly into account.
In the Large Velocity Gradient model (LVG) opacity effects in the lines are explicitly taken
into account by introducing the photon escape probability formalism. Crudely speaking,
the critical density of the transition,
,
can be lowered
by means of an effective Einstein-probability,
,
where
is in the range 0 to 1 for infinite and zero optical depth, respectively
. This can effectively "delay'' line saturation. For illustrating purposes,
but, in general,
is geometry dependent (Castor 1970).
![]() |
Figure 8:
The fluxes of rotational lines of CO, observed with the LWS, are compared to LVG model
computations. Filled circles with error bars refer to LWS data, where more than one value for a
given J correspond to different detectors. The upper limit is ![]() |
Open with DEXTER |
For under-resolved sources, an ambiguity can arise from the fact that hot and tenuous models
may be indistinguishable from cool and dense ones.
However, assuming that the rotation diagram analysis can provide an estimate
of the kinetic gas temperature, LVG can be used to determine the average density of the emitting
region. This is shown in Fig. 8, for the resulting
cm-3, which is in good agreement with the results by McMullin et al. (2000).
In these models, the presence of a diffuse radiation field is introduced by
the dust temperature
K, the wavelength of unit optical depth
m, the frequency dependence of the dust emissivity
and
a geometrical covering factor of 0.5 (cf. Larsson et al. 2000). The (clearly detected)
high-J lines are all only mildly sub-thermally excited (justifying a posteriori our initial
assumption), but have substantial opacity, e.g.
.
First at
start the lines to become optically thin again (
).
The principle parameter of the LVG model is related to the ratio of the column density to the
line width,
.
For a given density of the collision partners,
,
this ratio is given by
![]() |
(3) |
From the model fit,
cm-2 for
the adopted
km s-1 (FWHM of a Gaussian line shape; see Sect. 4.3).
A circular source would have a diameter of about 5
(1500 AU),
a thickness of about 600 AU and an H2 mass of about 0.01
(for
= 10-4).
Finally, the total CO cooling rate amounts to
.
The hot regions emitting in the H2 lines (Sect. 4.2.1) are not expected to contribute significantly to the CO emission
observed with the LWS. We predict the strongest CO lines from this gas to be the (J=4-3)
and the (J=5-4) transitions, with "LWS''-fluxes from a 10
source of about
erg cm-2 s-1.
![]() |
Figure 9:
The fit (smooth line) of the LVG model to the observed spectrum (histogram). All molecules,
i.e. CO, 13CO, ortho-H2O, para-H2O and OH, are assumed to share the same density and temperature, viz.
![]() ![]() |
Open with DEXTER |
The CO-model of the previous section can be used (by keeping
constant)
to investigate whether it is applicable also to other molecular species. Such a
"one-size-fits-all'' model would have the advantage of
permitting the straightforward estimation of the relative abundance of these species
(see Liseau et al. 1996b for an outline of this method).
The reasonably satisfactory result of such computations for 13CO, ortho-H2O, para-H2O and OH is presented in Fig. 9.
The 13CO spectrum has been computed under the assumption that 12CO/13CO is
as low as 40 (Leung & Liszt 1976). The data are clearly consistent with this value,
but the S/N is insufficient to conclusively provide a better defined value. Since the 13CO
lines are all optically thin, the cooling in these lines (
)
is relatively more efficient than that in CO (by almost a factor of two).
The H2O model is based on considering 45 levels for both ortho- and para-H2O, including
164 transitions each. The radiative rates are from Chandra et al. (1984) and the scaled collision
rates from Green et al. (1993). The model fit of the observed spectrum requires an o/p = 3for H2O and the derived H2O-abundance is X(H2O) = 10-5. As expected,
the excitation is sub-thermal and the lines are very optically thick (e.g.,
,
).
Both the 380 GHz ortho-transition (414-321) and the 183 GHz para-transition
(313-220) are predicted to be masing (
). The total cooling rate due to water vapour
is
,
i.e. at the 60% level compared to the CO cooling rate.
For OH, the Einstein A values were computed from the data provided by D. Schwenke, who also gives the energy levels. The
collision rate coefficients for 50 transitions were obtained from Offer et al. (1994).
As before, the excitation is sub-thermal
and the lines are optically thick (e.g.,
in each line of the doublet).
This refers to the derived, relatively high, value of the OH-abundance of
(OH/H2O = 0.2). The OH lines cool the gas as efficiently as H2O, viz.
.
The model is overpredicting
the 119
m line flux (whereas the 113
m H2O line is underpredicted), perhaps indicating
a distribution of temperatures (and densities). However, these
lines fall in one of the least well performing LWS detectors (LW 2) and instrumental effects
cannot be excluded.
So far, we have considered only models of a homogeneous source at a single kinetic temperature in a plane-parallel geometry. The relaxation of these, likely unrealistic, assumptions is the topic of the next sections.
In our previous paper, we presented a self consistent radiative transfer model
for the SED of SMM 1 (Larsson et al. 2000). For a simplified analysis and for
a direct comparison with previous spherical models of the object, we adopted
spherical geometry of the dusty envelope. The model provided a good fit to the
observations longward of about 60 m, but resulted in too low fluxes in the
mid-IR. As already noted in that paper, the spherical symmetry may not be a
very good assumption for SMM 1, the source driving the bipolar outflow. In
this paper, we performed detailed modelling of the dusty object using our 2D radiative transfer code (Men'shchikov & Henning 1997), which enabled us to
quantitatively interpret existing dust continuum observations and to derive
accurate physical parameters of SMM 1. In the next section, the density and
temperature structure of the model will be used in a Monte-Carlo calculation
of the CO line radiation transfer in the envelope. Our approach and the model
geometry are very similar to those for two other embedded protostars: HL Tau
(Men'shchikov et al. 1999) and L1551 IRS 5 (White et al. 2000); we refer to
the papers for more details on the general assumptions, computational aspects,
and uncertainties of the modelling.
![]() |
Figure 10:
Model geometry of the dusty torus of SMM 1 (see Sects. 4.2.4
and 4.2.5). Different shades of gray show schematically the density falling
off outwards. The radius of the compact dense torus is ![]() |
Open with DEXTER |
![]() |
Figure 11:
Comparison of the observed SED of SMM 1 and the model of the dusty
torus. The individual fluxes (see Larsson et al. 2000 for details) are
labelled by different symbols, to distinguish between beams of different sizes.
The model assumes that we observe the torus at an angle of 31![]() |
Open with DEXTER |
Parameter | Value |
Distance | 310 pc |
Central source luminosity | 140 ![]() |
Stellar effective temperature | 5000 K |
Torus opening angle | 100![]() |
Viewing angle | 31![]() |
Torus dust melting radius | 2 AU |
Torus outer boundary | 1.4 ![]() |
Torus total mass (gas+dust) | 33 ![]() |
Density at melting radius | 2.5 ![]() |
Density at outer boundary | 1.4 ![]() |
Outflow visual
![]() |
71 |
Midplane
![]() |
2200 |
The model assumes that SMM 1 consists of an axially-symmetric
(quasi-toroidal), dense inner core surrounded by a similarly-shaped "envelope''
(Fig. 10). A biconical region of much lower density with a
full opening angle of 100
is presumed to be excavated in the otherwise
spherical envelope by the outflow from SMM 1. The structure, for brevity
called "torus'', is viewed at an inclination of 30
with respect to the
equatorial plane of the torus. Main input model parameters are summarised in
Table 6.
As very little is known about dust properties in SMM 1, we adopted a dust
model very similar to that applied by Men'shchikov & Henning (1999) for HL Tau
and by White et al. (2000) for L1551 IRS 5. The dust population consists of 4
components: (1) large dust particles of unspecified composition, with radii
100-6000 m, (2) core-mantle grains made of silicate cores, covered by dirty
ice mantles, (3) amorphous carbon grains, and (4) magnesium-iron oxide grains.
The latter 3 components of dust grains have the same radii of 0.08-1
m. The
dust-to-gas mass ratios of the components are 0.01, 0.0005, 0.0068, and 0.0005,
respectively. The first component of very large grains is present only in the
compact dense torus (
120 AU), where all smaller grains are assumed
to have grown into the large particles. Note that although unknown properties
of dust generally introduce a major uncertainty in the derived model parameters,
extremely high optical depths in SMM 1 make the model results not very sensitive
to the specific choice of the grain properties, except for the presence of very
large grains in the dense central core.
![]() |
Figure 12: Comparison of the model visibilities at 0.8 mm, 1.4 mm, 2.7 mm, and 3.3 mm with available measurements of Brown et al. (2000) and Hogerheijde et al. (1999). The upper and lower curves in each panel show the visibilities for two directions in the plane of sky, parallel and orthogonal to the projected axis of the model. |
Open with DEXTER |
![]() |
Figure 13: Density and temperature structure of the model torus of SMM 1. Left panel: the total densities in the midplane and in polar outflow regions, and dust densities of different dust grain components (for only their smallest sizes). Right panel: the temperature profiles correspond to the midplane of the torus; they were obtained self-consistently from the equation of radiative equilibrium. |
Open with DEXTER |
In the modelling of the dusty torus, we fitted all available photometry of SMM 1, paying special attention to the effect of different beam sizes. Important constraints for the density structure were provided by the available submm and mm interferometry of the object. The model SED, compared to the observations in Fig. 11, fits almost every single individual flux in the entire range from the mid-IR to mm wavelengths. Note that it would be wrong to fit the observed data with the total model fluxes, because the angular size of SMM 1 is generally much larger than the photometric apertures. In fact, the model demonstrates that the effect of beam sizes on the fluxes may be as large as an order of magnitude.
Comparison of the model visibilities to the interferometry data shown in
Fig. 12 demonstrates that the model is also consistent with
the observed spatial distribution of intensity. The visibilities indicate that
there is a dense core inside of a lower density envelope. The radial density
and temperature profiles of the model, are shown in Fig. 13.
The innermost dense core has a
density gradient in the
model, whereas the outer parts of the lower-density envelope have a steeper
density distribution (
). The temperature distribution
was obtained in iterations as a solution of the energy balance equation.
We have used the density and temperature distributions of this dusty torus model in combination with a Monte Carlo scheme to compute the radiative transfer of the CO lines, and its isotopomers, through the source.
Observations of the
in the J=2-1 transitions of the CO-isotopomers C18O and C17O
are present in the archive of the James Clerk Maxwell Telescope (JCMT). These potentially
optically thin lines could trace the embedded core SMM 1. Our disk model reproduces the observed
line intensities of these low-J isotopomers fairly well (Fig. 14). There,
the averaged background emission of the surrounding gas has been subtracted, in order to reveal the
line profiles of SMM 1 itself. From the figure it is evident that the C18O and C17O lines
are optically thick out to a point, where the temperature falls below 15 K and where substantial
condensation of the CO gas onto dust grains occurs. This CO freeze-out was treated following
Sandford & Allamandola (1993 and references therein), where the ice-to-gas ratio
is proportional to
the dust density n, and to functions of the gas and dust temperatures,
and
respectively, viz.
![]() |
(4) |
![]() |
Figure 14:
Upper panel: for background emission corrected line profiles of low-J CO isotopomers,
viz. C18O (2-1) and C17O (2-1), toward SMM 1 are shown as histograms. The observations
were retrieved from the JCMT archive. The results from 2D-Monte Carlo radiative transfer calculations
for the disk/torus model are shown by smooth lines. The shown integrated line intensity refers
to the model, for which adopted abundances are 12CO:C18O:C
![]() |
Open with DEXTER |
![]() |
Figure 15: Same as in Fig. 14, but for three high-J CO transitions, which fall in the ISO-LWS spectral band. |
Open with DEXTER |
The CO lines falling into the LWS range are all formed in the inner, hotter parts
of the source (
AU,
K). This small line forming region is insufficient
to produce the observed flux levels, i.e. the model underpredicts observed high-J line
fluxes by more than two orders of magnitude. Irrespective of the geometry, we can conclude quite generally
that the CO lines observed with the LWS do not originate from the central regions of SMM 1, be it an
accretion disk, be it infalling gas (we have also computed "inside-out'' collapse models).
For the excitation of this gas we need to consider alternative mechanisms and, since outflows are known to exist in this region, shock heating of the gas offers a natural option. Our temperature determinations for the molecular gas (Sect. 4.2.1) are also consistent with this idea.
From the discussion of the preceding sections we can conclude that the heating of the gas is most likely achieved through shocks. These shocks are generated by flows within the LWS beam. Comparing the observed and predicted molecular line emission with the J-shock models by Hollenbach et al. (1989) and Neufeld & Hollenbach (1994), we find that these models are in conflict with our observations.
In Fig. 16, we compare our observations of rotational lines of H2, CO, H2O and OH with
predictions of the C-shock models by Kaufman & Neufeld (1996). The models for
(cm-3)
and
15-20 km s-1 are in reasonable agreement with the for extinction corrected
(
= 12 mag) observed values for H2 and for a flux from
(1 CVF-pixel). For CO, the model fits the observations
for an adopted circular source of diameter 11
.
To achieve agreement for H2O, the model
fluxes would need to be adjusted downwards by a factor of 2.5, whereas an increase by more than one
order of magnitude (a factor of 12) would be required for OH. Evidently, OH is largely underproduced
by these models, a fact also pointed out by Wardle (1999). If on the other hand the Wardle model
is essentially correct, this would suggest that the ionisation rate in the
is significantly higher
(up to
)
than on the average in dark clouds,
-
.
High X-ray activity is known to be present within the
(Smith et al. 1999 and references therein).
It is conceivable that such a high ionisation rate could also have considerable consequences
for the cloud chemistry and its evolution. For instance, a relatively higher H+3 abundance
could be expected, the effects of which (in addition to the enhanced abundance of OH) may in fact
have already been observed (e.g., HCN/HNC
1; McMullin et al. 2000 and references therein).
![]() |
Figure 16:
Comparison of our molecular line observations with the predictions of theoretical models
of C-shocks (Kaufman & Neufeld 1996). The pre-shock density is always
![]() ![]() ![]() ![]() |
Open with DEXTER |
Based on their 0.8 mm JCMT-CSO interferometry, Brown et al. (2000) obtained estimates of the size, mass and average (dust) temperature of the disk of SMM 1. The estimated mass is larger and the size of the disk is smaller by one order of magnitude than what is required to account for the observed level of line emission (Sect. 4.2.2). Unless the disk (extended atmosphere?) is heated to very much higher temperatures (by an as yet to be identified mechanism) than the 60 K determined by Brown et al., we find it unlikely that the molecular line spectrum of SMM 1 is of circumstellar disk origin. Our own calculations (Sect. 4.2.4) confirm this conclusion.
It is intriguing that the luminosity of the spherical model of SMM 1 (71 ,
Larsson et al. 2000)
is close to the "magic number'' of the classical main accretion phase of solar mass stars (Shu et al. 1987).
At the elevated cloud temperature of the
(
40 K, White et al. 1995), the
isothermal sound speed is 0.4 km s-1 and, hence, the (time averaged, cf. Winkler & Newman 1980)
mass accretion rate corresponds roughly to M
,
yielding
,
where we have used the mass-radius relationship of
Palla & Stahler (1990). In this scenario, the age of SMM 1 would be about 105 yr or less,
depending on the details of the acquired mass of the (presumably deuterium burning) central core.
Regarding the data presented in this paper, we find it however difficult to reconcile this
accretion shock model with our observations. As concluded in Sect. 4.2.4, the excitation of
the observed lines requires significantly larger volumes at elevated densities and temperatures.
The H2 observations are partially resolved and there exists no ambiguity as to where, with respect
to SMM 1, the emission arises (cf. Fig. 2). These lines trace a collimated outflow
toward the northwest of SMM 1, which is also
seen in ro-vibrationally excited H2 line emission (Eiroa & Casali 1989; Hodapp 1999). In
the graphs of Fig. 16, we have assumed that also the LWS lines originate essentially at the
location of the H2 spots (i.e. we have artificially introduced another factor of two for the fluxes).
However, the dereddened data of Eiroa & Casali (with the -value determined in Sect. 4.2.1)
could potentially present an additional difficulty for the C-shock model (Kaufman & Neufeld 1996).
The estimated 1-0S(1) line intensity would in this case
be larger by more than two orders of magnitude than that predicted by the model. We cannot exclude
at present, however, the possibility that the 1-0S(1) emission observed by Eiroa & Casali (1989)
is essentially unextinguished. Photometrically calibrated data at higher spatial resolution would be
required to settle this issue.
The mechanical energy input by the flow is
,
which for
a pre-shock density of
,
a shock velocity
= (15-20) km s-1, and a
5
source size yields
-
.
From the Kaufman & Neufeld (1996) C-shock model, this gas is cooled by H2 at a rate of
(1.0-
.
From the LWS data, we
inferred the total cooling rate through the lines of CO, 13CO, H2O and OH of
(Sects. 4.2.2 and 4.2.3), corresponding to 0.5% to 1% of the total
dust luminosity. This is larger by factors of 5 to 12 and it is thus not excluded
that the shocked regions observed in the H2 lines and those giving rise to the
FIR lines are not the same. We reached the same conclusion on the basis of our
excitation and radiative transfer calculations.
The observed and background-corrected [O I] 63 m emission toward SMM 1 suggests a
contribution also by J-shocks within the LWS beam (Sect. 4.1.2). Intriguingly, the
derived dimensions are practically identical to those determined for the LWS-molecular
emission, albeit existing J-shock models do not predict the relative intensities correctly.
At present, we can merely conclude that shocks, in general, provide a plausible energy input mechanism,
although the details of the shock type(s) are less clear. We propose that predominantly slow shock
waves in the dense medium surrounding SMM 1 provide the heating of the molecules we have
observed with ISO, whereas dynamical collapse is not directly revealed by our data.
Based on spectrophotometric ISO imaging with the LWS and the CAM-CVF of significant
parts of the active star forming
our main conclusions can be summarised as follows:
Acknowledgements
We are grateful for the help with the data reductions of the CVF observations by Stephan Ott. We also thank Ewine van Dishoeck for making avalailable to us the collision rate coefficients for OH in electronic form. The support of this work by Rymdstyrelsen (Swedish National Space Board) is acknowledged.
The photometric calibration of the LWS is primarily based on observations
and models of the planet Uranus. The S/N in these observations is rather modest,
which will affect the relative spectral response function (RSRF) derived from these data.
When calibrating the "science data'', the registered photocurrent is
divided by the RSRF, propagating any uncertainty in the
RSRF, which will ultimately lead to errors in the derived flux density,
.
The derived photocurrent after standard processing, resulting in an SPD file and where identified instrumental peculiarities have been removed, is shown for the LW 5 LWS detector in the upper panel of Fig. A.1, together with the relative spectral response function scaled to the same mean value. From the figure, it is evident that many features seen in the photocurrent are due to the detector and grating response.
The middle panel of Fig. A.1 shows again the photocurrent and the RSRF, but now after the subtraction of a wide boxcar smoothing function (continuum subtraction). The upper curve shows the result of the division of the photocurrent by the response function. This allows us to gauge the effects on the spectra from the narrow features of the RSRF. In the long wavelength regime of the LWS, and in LW 5 in particular, there are spurious absorption features at positions, where the RSRF is steep. In regions, where the RSRF has steep gradients, can already very small wavelength errors create large features that could be mistaken for spectral lines. A wavelength mismatch between the photocurrent and the RSRF will also introduce an overall lowered S/N.
In the lower panel of Fig. A.1, a relative shift by less than a
quarter of an resolution element (the original sampling rate was at four times
the spectral resolution) of the photocurrent resulted in the considerable reduction
of an apparent broad "absorption'' feature near 172 m, an overall better S/N and
therefore a better definition of the spectral lines.
All individual spectra for all ten detectors have been carefully monitored for obviously anomalous features which (most likely) were introduced by the RSRFs. This was done for the RSRFs of both OLP 8 and OLP 10 and any such spurious features were, of course, corrected for. This does not guarantee, however, that no such false spectral features do still exist in our data, as we were very restrictive in our application of any wavelength shifts.
We used rate coefficents for collisions of CO with H2 which
are based on values found in the literature but which have been extended
to rotational quantum numbers
,
although extrapolations to
higher J is not excluded.
For
and for low temperatures, (5-400) K,
we used the recent rates of Flower (2001; ortho-H2-CO and para-H2-CO;
downward rates). For the higher temperature range of (>400-2000) K, the
calculations by Schinke et al. (1985; para-H2-CO; upward rates) were used.
The matching between these data sets is roughly acceptable, but there
exist disagreements (Fig. B.1), which reflect the differences in
assumptions and computational methods (see the discussion of resonances by
Flower).
In order to arrive at a consistent set of collision rate constants for
the hole range of temperatures, the Schinke et al. data (correctly
transformed to de-excitation rates; see also: Viscuso & Chernoff 1988)
were laterally shifted to fit the Flower data at 400 K. A satisfactory matching
was, however, not really possible for the lowest transitions connecting to
the ground state, see the lower panel of Fig. B.1.
In the figure, these expanded rates are labelled
.
![]() |
Figure B.1:
Downward rate constants for collisions of CO with para-H2:
Upper panel: as a function of J, where the solid lines are for
![]() ![]() ![]() ![]() |
These
data span J-values up to 20 and temperatures between 400 and 2000 K.
For the same temperature intervall,
McKee et al. (1982, MSWG) have published calculations (He-CO; downward rates)
for J-values up to 32 (Fig. B.2 upper panel).
These rates (
)
were divided into the Schinke et al. rates and
fit by a polynomial to correct the shape of the McKee et al. data
(Fig. B.3 upper panel), viz.
![]() |
(B.1) |
![]() |
(B.2) |
![]() |
Figure B.2:
Rate constants for CO as a function of J:
Upper panel: the solid lines refer to the rescaled data of Fig. B.1,
i.e.
![]() ![]() ![]() ![]() |
![]() |
(B.3) |
![]() |
(B.4) |
So far, we have considered rates only connecting to the ground state, i.e.
.
Flower (2001)
did provide rates for collision transitions between all level's, but for higher J-values and/or higher
temperatures we don't have that information. If the kinetic energy of the collision partners on the other hand
is large compared to the rotational energy spacing of the CO molecule,
the other rate cofficients can be obtained from (Goldflam et al. 1977; McKee et al. 1982)
![]() |
(B.5) |
![]() |
(B.6) |
Finally, the rates for the inverse transitions were obtained from the condition
of detailed balancing, viz.
![]() |
(B.7) |