next previous
Up: S Doradus variables in the Clouds


Online Material


 
 
Table 1: Selected particulars of the s-a S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8)
designation date $\log T_{\rm eff}$ MV $\log L/L_{\odot}$ ref. g?d? ref.
HD/HDE              
AG Car min 1985-1990 4.46a -7.7 6.14 96,103 y y 173, 196, 251, 254, 264, 273, 291
= 94910 max 1982 4.13 -9.8 6.22 96    
HR Carb min 1970 4.34 -8.0 5.90 pp y y 120, 173, 196, 250, 251
= 90177 max 1992 3.90 -9.3 5.62 pp    
160529 min 1989.5 4.00 -8.4 5.46 77 n n 173, 250
= 164G Sco max 1972-1980 3.90 -8.9 5.46 77    
WRA751 min 1989-1991 4.48 (-6.0) (5.50) pp,114,126 y y 126, 173, 196, 250, 291, 297
  max 1949-1951            
R4c min $\sim$1984 4.43 -5.3d 5.06 67 y y 95, 275
= S6 max $\sim$1988            
A-comp   3.98 -5.2d 4.14 67    
R40 min $\sim$1959 4.05 -8.7 5.66 9    
= 6884 max 1996.3 3.90 -9.5 5.70 137,138    
R71 min 1982, 1989 4.24 -8.0 5.80 42 y y 173, 196, 250
= 269006 max 1975 4.10 -9.2 5.92 42    
S Dor min 1965 4.54e -7.6 6.30 70 ? ? 173, 250
= R88 max 1989 3.93e -10.0 5.96 70    
= 35343              
R110 min 1957-1962 3.96 -8.4 5.36 7,63 ? ? 173, 250
= 269662 max 1993 3.84 -9.2 5.56 7,63    
R116f min 1989-1990 4.29 -8.4 5.92 pp    
= 269700 max $\sim$1900            
R127 min 1969.9 4.46 -7.4g 6.00 5,7 y y 173, 250, 256
= 269858f max 1989.8 3.87 -10.0 5.92 7    
R143 min 1981-1995 4.23 -8.2 5.70 pp ? ? 173, 250
= 269929 max 1957 3.90 -9.4 5.72 pp    
269216h mean 1970-1993 4.08 -8.2 5.44 64,66    
= Sk $-69^{\circ}75$              
HV5495i min 1988-1993 4.46 -7.0 5.80 22 ? ? 173, 250
= 269582 max $\sim$1990            
= BE294              
= MWC112              

Notes to Table 1:
a See the discussion on the temperature scale (70).
b In the maximum of 1992 (b-y) = 0.83 and with E(b-y) = 0.78E $(B-V)_{\rm J}$ = 0.78, (b-y)0 = 0.05. Adopting $\log g$ $\sim$1 and a solar abundance, $T_{\rm eff}$ $\sim$8000K (259).
c R4 consists of two components: an LBV/B[e] star and an A-type star. The latter is presumably constant. See note d in Table 3.
d Adopted value by (67).
e The temperatures at the visual minimum of 1965 and the visual maximum in 1989 have been derived from the estimated colour $(B-V)_{\rm J}$ $\sim$-0.1 (74) and the observed colour $(B-V)_{\rm J}$ = 0.28, respectively, and corrected for E $(B-V)_{\rm J}$ = 0.20. Vennix et al. (quoted by (71)) using Kurucz models and a different distance and reddening for the same visual maximum found: $\log T_{\rm eff}$ = 3.95 and $\log L/L{\odot}$ = 5.85. Note that the epoch of our chosen visual minimum is not the same as theirs.
f The spectral type in the visual minimum is according to (9): B1.5Iaeq.
g The visual minimum which has been used for the determination of MV has been corrected for the faint companion, see note d in Table 2.
h Spectral type according to (64) and (65) B8I.
i Spectral type close to visual minimum ($V_{\rm J}$ = 11.88) WN10h by (22).


 
 
Table 2: Selected particulars of the s-a S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8) (9)
designation $E(B-V)_{\rm J}$ ref. r ref. $V_{\rm J}$ $V_{\rm J}$ ref. add. ref.
HD/HDE     (kpc)   min max   [Remarks]
AG Car 0.63 97 6 97,98 8.1 6.0 70 29,46,57,76,78,83,99,
                101,109,113,114,116,119,
                121,124,125,127,128,131,
                196,198-201,263
HR Car 1.00 102,107 5.2 110,111 8.7 7.4 7,108 32,46,57,109,112,
                113,114,116,122,123,
                128,196,198-201
160529 1.10 77 2.5 77 6.95 6.4 77 79,80,81,82,198-201,281,293
                [See for BD and
                HD mag note a]
WRA751 1.6 114,115, $\geq$ 4.5 114,115, 12.3 10.3 114,115, 196
    126   126     117,118  
R4 0.07 67     13.0b 12.5b 67 95,134
R40c 0.14 136     10.7c 9.9 9,137 57,83,119,198-201,281
                [HDptg 1900 = 10.8]
R71 0.20 42     11.0 9.9 43,74,197 44,46,47,57,78,83,119,168,
                196,198-201,281
                [HDEptg 1925 = 9.2]
S Dor 0.20 70     11.4 9.0 70 44,57,71,72,73,74,75,78,
                168,198-201,271,281
R110 0.15 62     10.6 9.7 3,7 10,23,51,57,199-201,281
                [HDEptg 1925 = 10.8]
R116 0.15 8     10.6   8 9,10,44,50,51,52
                [HDEptg 1925 = 10.4]
R127 0.12 103     11.2d 8.8 7,88 1,6,9,46,57,76,78,87,
                198-201
                [HDEptg 1925 = 11.1]
R143 0.54 1     12.0 10.6 1,2,85, 3,4,9
              86  
269216 0.12 66     10.7e   66 49,65
                [HDEptg 1925 = 11.0]
HV5495 0.24 39     12.2 11.7 22,39,40, 12,23,131,199-201
              41  


Notes to Table 2:
a BD visual magnitude ($\sim$1850) = 6.9. Three HD photometric magnitudes (ptm) in 1897 with an average 6.69 and two in 1899 with an average 6.68. The averages and (the small) residuals are given in H.A.45 and 46, respectively. The HDptg 1900 = 7.6 is more or less consistent with respect to the HDptm above in view of the high reddening amounting to 1.10 (Col. 2).
b Both components together, see note d in Table 3.
c Note that the HDptg magnitude (see Col. 9) and the $\sim$1959 magnitude $V_{\rm J}$ = 10.73 by (9), are roughly equal. Thus, considering the low reddening, the star was at both epochs at roughly the same minimum brightness. Note that the current SD-activity started after 1959, see (7) and (137).
d This is the magnitude including the faint field star nearby. After correction $V_{\rm J}$ = 11.4.
e This is the mean apparent magnitude.


 
 
Table 3: Time scales and amplitudes of the light variations of the s-a S Dor variables
(1) (2) (3) (4) (5) (6)
designation L-SD S-SD microvar. ref. light curve/
HD/HDE (yr, mag) (yr, mag) (d, mag)   light history
AG Car 25 1a 10-41 43,70,78,84,100, Fig. 1
  1-2 0.2-1.5 0.1 102,247,248  
HR Car 10-20 2-3 20-40 7,78,247  
  0.5 0.5 0.15    
      100    
      0.2    
160529 30-50 2.7 45-57 77,78,84,b Fig. 2
  0.5 0.1 0.1    
WRA751c c c 30.5 115 Fig. 3, Table 16
      0.15    
R4d (25)     67  
  (1)        
R40 25 3.5 46; 99; 121 7,66,137,247 Table 16
  0.2-0.6 0.02 0.1    
R71 10 3, 6 14-24; 76 7,43,69,76,84,247 Fig. 4, Table 16
  1 0.25 0.1    
      100-200    
      0.2    
S Dore 35 6.8e $\sim$100; 131; 195 70,76,247,248  
  1-2 0.5-1.2 0.2    
R110 20 2-3 50-100 7,63,247 Fig. 5, Table 16
  0.3-0.6 0.1-0.3 0.02-0.1    
R116 (25-50)   (10-40) 8 Fig. 6, Table 16
  1.4        
R127 >13 1.4 $\sim$100; 111 7,78,247 Fig. 7, Table 16
  1.7 0.5 0.1    
R143 >30       Fig. 8, Table 16
  (1.5)        
269216   1.6 (16) 66 Fig. 9
    0.4 0.1    
HV5495 20 2.2   39,40,41 Fig. 10, Table 16
  1.2 0.3-0.5      


Notes to Table 3:
a The primary period P0 = 371.4d shows a beat of 21.6yr (70), see Fig. 1 and Sect. 1.5.3.
b According to the analysis of spectroscopic time series (293), a dominant period of 92.5d is present for the photospheric line profile variations, which is about twice the photometric periods, and a period of 114-127d for the wind line profile vriations.
c It is unknown to what type of SD-phase (S-SD or L-SD) the long-term light variation belongs with an approximate amplitude of $2^{\rm m}$ (Fig. 3).
e Although the colour index $(U-B)_{\rm J}$ becomes bluer during brightening (67), while this should be just like the $(B-V)_{\rm J}$ redder, we are yet most likely dealing with an SD-phase. This blueing can be explained by the presence of the A-type companion of which the contribution in the UV channels becomes dominant when the S Dor star becomes cooler than its companion. For example: if $V_{\rm J}$ (S Dor star in min) = 13.9, and $V_{\rm J}$ (A star) = 14.0, the blueing in $(U-B)_{\rm J}$ can be explained if the rise in the visual due to an SD-phase amounts to $\sim$$1^{\rm m}$.
d The reported brightening in 1999 by (271) is nothing else then a new S-SD phase, confirming the established cyclicity amounting to on the average 6.8yr (70).


 
 
Table 4: Selected particulars of the w-a S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8) (9)
designation Sp. date $\log T_{\rm eff}$ MV $\log L/L_{\odot}$ ref. g?d? ref.
HD/HDE                
$\eta $ Cara   1970-2000 4.36-4.18 -7--9 5.14-6.34 181,182,183, y y b
= 93308           184,186,194    
P Cyg B1Ia+ min 1980-2000 4.26 -7.9 5.70 142 y n 149,173,196,
= 193237               240,250,255
168607 B9.4Ia+ 1970-1990 3.97 -8.4 5.38 38,48 n n 173
= V4029 Sgr                
Cyg OB2#12 B5Ie 1990 4.11 (-10.4) (6.42) 162    
R74 BIe 1988-1990 4.11 -7.8 5.40 8    
= 268939                
R81 B2.5eqIa+ min 1960-1995c 4.30 -8.6 6.04 139    
= 269128                
R85d B5Iaed min 1960 4.13 -8.2 5.54 pp,9    
= 269321   max 1983-1990 4.00 -8.5 5.50 pp,63,272    
R99e WN10 1960-1990 4.50 -8.3 6.42 93 ? ? 173,250
= 269445                
R123e Bpec 1980-1990 4.54 -8.5 6.60 94    
= 37836                
R149 Be+neb 1960-1985 4.30 -6.4 5.16 pp    
= -69$^{\circ}$ 476f                
34664 B[e] 1982-1990 (4.39)g -7.4 (5.80)g pp - y 21
= S22     4.18h -7.4 5.32h pp    
38489i Be min 1960 & 1984 4.52 -8.0 6.36 pp - y 95
= S134   max 1966 4.05 -8.4 5.52 pp    


Notes to Table 4:
a Total luminosity $\log L/L_{\odot}$ = 6.65 ( $M_{\rm bol} = -11.9$). Physical and photometric parameters in the table are only for the S Dor variable hidden in $\eta $ Car. Their large uncertainty is due to the following facts: (i) most of the visual light is reflected light from the core by the Homunculus; (ii) the internal reddening in the Homunculus is highly uncertain; (iii) the S Dor variable is presumably not single (e.g. 185). The peculiar non-stellar variability (Sect. 3.2.6) is perhaps due to the varying physical conditions of a luminous accretion disk according to (298), perhaps around a hot nearby companion of the S Dor star. The error box in Fig. 20 has been computed from the estimated temperature- and MV limits of the S Dor star. The spectral type of that object looks like that of P Cyg (186), (294). See for more information the notes to Tables 5 and 6 and Sects. 3.2.2 and 3.2.6.
b The literature on the Homunculus is overwhelming, see ``add.ref.'' in Table 5 and references therein.
c Presumably the star is at present in a minimum of SD-phases, but the parameters were taken outside the eclipse (Fig. 12), since R81 is an eclipsing binary (140) of which the revised period $P = 74.55\,d~\pm~0.02$d m.e. (66).
d The spectral type is from (9) and presumably for the date $\sim\,1959$. According to (272) the spectral type was AIe in October 1996 and somewhat hotter in January 1999: B8Ie. The trend of these three spectral types supports the presumable trend of the L-SD cycle sketched in Fig. 13, thus, in the minimum the star is hotter than in the maximum. For the temperature and luminosity during the maximum (1983-1990), a spectral type A0Ia has been adopted, inspired by the spectrum made some years later by (272). The minimum and maximum apparent magnitudes used for the two MV values are 10.8 and 10.5, respectively.
e Possibly having a disk, see references in Col. 7.
f CPD number. The maximum light amplitude, MLA = 0 $.\!\!^{\rm m}$3, is too high for a normal $\alpha $ Cyg variable, thus, supporting the S Dor membership based on (10) and observations listed in Table 7, see note e in Table 5 and note f in Table 6.
g If the spectral type is B0-0.5 according to (14).
h If the spectral type is B4 according to (13), which agrees better with the photometry than the previous spectral type in note g, therefore, the star has been plotted with the matching $T_{\rm eff}$ and L on the HR-diagram in Fig. 20.
i See Fig. 18 for a correlation $V_{\rm J}$/ $(B-V)_{\rm J}$ which supports the S Dor membership. However, the track on the HR-diagram is abnormally steep (Fig. 20). Perhaps inadequate photometry and/or the presence of much circumstellar material is the cause of its abnormality.


 
 
Table 5: Selected particulars of the w-a S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8) (9)
designation $E(B-V)_{\rm J}$ ref. r ref. $V_{\rm J}$ $V_{\rm J}$ ref. add.ref.
HD/HDE     (kpc)   mean min   [Remarks]
$\eta $ Cara 0.50 178,179, 2.3 189,194 a a   83,119,190,191,193,195,198-201,
    180,181           202,203,206,242,243,269,276,
                278,279,282,283,287,288,289,
                290,292,294,295,296,298,299
P Cyg 0.51 142,145 1.7 142   4.9 147,169, 143,144,146,149,150,151,
              204 152,224,237,238,239,240,
                241,249,280,281
168607b 1.55 38 2.2 132,133 8.2b   38,66, 48,198-201
              80,253 [HDptm 1900 = 8.9;
                $V_{\rm J}$(1956) = 8.29 (89)]
CygOB2#12 3.4 159,162 (1.7) 161,162 11.5   163 160,164
R74 0.15       11.0   8 9,10,11,12
                [HDEptg 1925 = 10.6]
R81 0.14 66,139,       10.3c 198-201 3,9,44,51,66,119
    141            
R85 0.17d pp     10.65 10.8 63 10,57,198-201,272
                [HDEptg 1925 = 10.9]
R99 0.42 91,94,     11.45   91 10,22,57,92
    95           [HDEptg 1925 = 11.6]
R123 0.20 94     10.55 10.7 91 10,44,57,87,93
R149 0.10       12.4e   10 9,165,166,167
34664 0.28 15     11.8   8,15 11,16,17,18,19,20,21
38489 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ... 87     11.85f 12.1f 8,85, 10,95
              87 [HDptg 1900 = 11.6]


Notes to Table 5:
a The apparent visual magnitude of the S Dor variable inside $\eta $ Car is very uncertain, see note a below Table 4. See for the integrated magnitudes (thus including the bipolar nebula) the references (182), (178), (188), (187), (184), (192) and (243). Note that the constructed $V_{\rm J}$ scale in (188), (187), (184) and (192) is about 0 $.\!\!^{\rm m}$15 fainter than the constructed $V_{\rm J}$ scale in (182) and (178) and about 0 $.\!\!^{\rm m}$2 fainter than the $V_{\rm J}$, directly obtained with an UBV photometer, from (243). The cause is the use of different filter systems, clearly expressed by the transformation formula and is not due to errors in the photometry. For instance, it is easy to see from the zero points in the transformation equations given for $V_{\rm J,Geneva} (22'')$ and y in Sect. 2 of (184) that the difference between the two systems amounts to 0 $.\!\!^{\rm m}$213. The first is brighter than the second magnitude scale and consequently close to $V_{\rm J}$ directly measured by an UBV photometer. The cause is the emission spectrum of $\eta $ Car and the narrowness of the y passband. See also (277).
b Note that the HDptg 1900 = 8.7, listed in the HD catalogue, has been derived from the HDptm, by adding the colour index -0.2 (see the Introduction to the HD catalogue), assuming zero reddening. Since the reddening appears to be substantial (Col. 2), the HDptg 1900 must be considered as erroneous.
c This is the outside-eclipse magnitude, but supposed to be the minimum of possible S Dor phases.
d Based on the spectral types in minimum light (B5Iae) and maximum light (A0Ia, see note d in Table 4) and $(B-V)_{\rm J}$ = 0.1 (9) and 0.18 (63), respectively.
e VBLUW photometry, made in eight nights in 1975 and 1976 are listed in Table 7. The $V_{\rm J}$ given above is an average based on a compilation in (10), complemented with the data in Table 7 and in (165), (166) and (167).
f At maximum light the apparent magnitude $V_{\rm J}$ = 11.6. In view of the reddening (Col. 2), the ``HDptm'' could have been between 11.1 and 11.6.


 
 
Table 6: Time scales and amplitudes of the light variations of the w-a S Dor variables
(1) (2) (3) (4) (5) (6)
designation L-SD S-SD microvar. ref. light curve/
HD/HDE (yr, mag) (yr, mag) (d, mag)   light history
$\eta $ Cara   1-6 58.6 84,184,187,188,192,195,205, Fig. 11b
    0.2-0.4 0.04-0.08 245,246,247,248,277,298  
P Cygc   8.2d 17.3 147,148,169,204  
    0.06 0.05-0.15    
      70-150    
      0.2    
168607e   1.8d 62 80,253 Table 16
    0.2 0.2    
CygOB2#12 (50)   ? 163  
  (0.2)   0.3    
R74     42.1 8  
      0.25    
R81 >50?   24.1 38 Fig. 12,
  >1   0.17   Table 16
R85 30-40 1.1 15-180 63 Fig. 13
  0.3 0.1 0.01-0.2    
R99 30   2.1, 10 91 Fig. 14
  0.3   0.15    
R123   0.8 3.9; 1.3 91 Fig. 15,
    0.2 0.13   Table 16
R149   >0.5? ? 166  
    0.1 (0.3)f    
34664g   7 47.2 8 Fig. 16
    0.04 0.14    
38489h       10 Fig. 17


Notes to Table 6:
a Showed a number of presumable SD-eruptions between 1827 and 1857, and a single SD-eruption around 1870 and once more around 1890, see next note.
b The historical observations (until 1910) include a few observations between 1600 and 1800. After 1935 a gradual rise set in, called the ``secular rise'' and has been interpreted as largely caused by a decrease of circumstellar extinction by the expanding bipolar nebula (178), see also (206) and (274). In Fig. 11, showing a schematic light curve, all observations after 1970 which are not measured by an UBV photometer are corrected according to our transformation equations to fit the $V_{\rm J}$ directly measured by an UBV photometer. See note a in Table 5 and (277). Superimposed on the secular rise (after 1960) the frequent SD-phases with a time scale of 1-6 yr and an amplitude of about 0 $.\!\!^{\rm m}$2 are schematically indicated. The last one of 1999-2000 has an amplitude twice as high (192), (243), (277), (298).
c Showed a number of SD-eruptions between 1600 and 1700 (150), (151). Balmerline shell ejections were observed on a time scale of a few months to half a year (152), (237), (238) and (249).
d This very low-amplitude oscillation is possibly an SD-phase: the $(B-V)_{\rm J}$ tends to be red in the maxima and blue in the minima. See for P Cyg the discussion in Sect. 3.2.2.
e Note that the star was possibly fainter around 1900, see Table 5. The 640d (1.8yr) peak in the Fourier analysis is likely due to an S-SD phase, clearly visible in Fig. 5 of (253) and not an artifact.
f This relative high amplitude, based on the references mentioned in note e in Table 5, may be partly caused by the SD-phase mentioned in Col. 3 of Table 6.
g Note that the amplitude of the microvariations is larger than that of the S-SD phase, see Fig. 16.
h It is uncertain to what type the probable long-term light variation (with unknown time scale) with an amplitude of 0 $.\!\!^{\rm m}$5 belongs, see also Fig. 17 and notes i and f in Tables 4 and 5, respectively.


   
Table 7: VBLUW photometry of R149 (in log intensity scale) and the transformed values in the UBV system (in magnitude scale) with subscript J, made in 1975 and 1976
JD - V V-B B-U U-W B-L $V_{\rm J}$ $(B-V)_{\rm J}$
2440000              
2712.555 -2.202 -0.003 -0.072 0.13 -0.030 12.39 -0.02
2714.552 -2.208 0.002 -0.080 0.08 -0.042 12.41 0.00
2813.382 -2.200 -0.008 -0.097   -0.047 12.39 -0.03
2818.362 -2.212 -0.005 -0.074   -0.040 12.42 -0.02
2830.282 -2.216 -0.012 -0.103   -0.042 12.43 -0.04
2838.299 -2.205 0.005 -0.089   -0.033 12.40 0.00
2862.288 -2.191 0.017 -0.085   -0.026 12.36 0.03
2869.344 -2.218 -0.004 -0.090   -0.040 12.43 -0.02


 
 
Table 8: Selected particulars of the ex-/dormant S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8) (9)
designation Sp date $\log T_{\rm eff}$ MV $\log L/L_{\odot}$ ref. g?d? ref.
HD/HDE                
$\zeta^{1}$ Sco B1.5Ia+ 1985-1995 4.29 -8.5 6.02 56,pp    
= 152236                
168625 B5.6/8Ia+ 1982-2000 4.15 -7.3 5.23 36 y y 173,250,252
= V4030 Sgr                
326823 B1.5Ie 1960-1990 4.29 -6.0 4.98 68,106    
= $-42^{\circ}$ 11834a                
He3-519 WN11 1985-1992 4.48 (-7.9) (6.26) 29,129, y y 135,173,250,251
            257    
316285 BIe 1984-1996 4.18 -8.4 5.44 33    
= He3-1482                
S61 Ofpe/WN9 1970-2000 4.45 -7.0 5.84 pp,154 y y 173,250
= Sk $-67^{\circ}$ 266                
Sk $-69^{\circ}$ 279 O9f 1980-2000 4.48 -6.4 5.68 158,pp y 155,156,279
S119 WN11h 1970-2000 4.44 -6.8 5.80 22b y ? 173,250,251,279
= 269687                


Notes to Table 8:
a CoD number.
b Model B.


 
 
Table 9: Selected particulars of the ex-/dormant S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8)
designation $E(B-V)_{\rm J}$ ref r ref. $V_{\rm J}$ ref. add.ref.
HD/HDE     (kpc)   mean   [Remarks]
$\zeta^{1}$ Scoa 0.65 53,55, 1.8 53,54, 4.75a 57,58, 59,80,207
    208   209   198-201  
168625b 1.7 34 1.2 36 8.4b 38,89, 35,37,48,66,198-201
            66,80, [HDptm 1900 = 9.2,
            253 VJ 1956 = 8.41 (89)]
326823c 1.15 105,106 2 106 9.1 105 32,83,119
He3-519d 1.3 29,129, (8) 129 11.0d 29,131 24,135
    257         [m$_{\rm pg}$ 1949-1950 $\sim$
              10.5 (130)]
316285 1.81 33 1.85 33 9.1 33 32,211
S61 0.18 92,153     12.0 49 154
Sk $-69^{\circ}$ 279 0.25 pp     12.8 23 157,244
S119e 0.09 1     11.95e 1,23 24,25,244
              [HDEptg 1925 = 11.4]


Notes to Table 9:
a The star was much brighter in the 18th and 19th century, see (58).
b Note that the HDptg = 9.0 (listed in the HD catalogue) has been derived from the HDptm = 9.2 by adding the estimated colour index -0.2, assuming that the reddening is zero. Since the reddening appears to be substantial (Col. 2), the HDptg is erroneous. The HDptm 1900 = 9.2 suggests that the star was $\sim$0 $.\!\!^{\rm m}$8 fainter around 1900 than at present.
c According to (104) and (105) perhaps an ex-S Dor variable on its way to the WN-stage, see note c in Table 10.
d According to (130) the star was possibly brighter in the interval 1949-1950, see [Remarks]. If this is the case, the star could be a w-a S Dor variable.
e It is not certain whether the magnitude difference with the HDEptg 1925, see the [Remarks], should be taken seriously.


 
 
Table 10: Time scales and amplitudes of the light variations of the ex-/dormant S Dor variables
(1) (2) (3) (4) (5) (6)
designation L-SD S-SD microvar. ref. light curve/
HD/HDE (yr, mag) (yr, mag) (d, mag)   light history
$\zeta^{1}$ Sco     2000a 56,58,84 Table 16
      0.02    
      32    
      0.1    
      25.7    
      0.1    
168625b     35 38,66,80,253 Table 16
      0.06    
326823c     6 105,119  
      0.1    
He3-519d         Table 16
316285e     ? 33  
      $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ... 0.1    
S61          
Sk $-69^{\circ}$ 279          
S119          


Notes to Table 10
a The colour becomes bluer in the light maximum, thus, this periodicity/cyclicity is presumably no SD-phase.
b See note b in Table 9 on a possible long-term light variation.
c While the object showed an increasing trend of the brightness between 1990 and 1994, the colour became bluer which is unlike an SD-phase, see note c in Table 9. Further, the photometric observations by (105) show a long-term oscillation of 396d and an amplitude of 0 $.\!\!^{\rm m}$2, but it is unknown whether they should be classified as an S-SD phase, in which case the object should be a w-a S Dor variable.
d See note d in Table 9 on a possible long-term light variation.
e According to (33) hardly variable ( $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ... 0.1) since 1890, also according to the Hipparcos data quoted by (103).


 
 
Table 11: Selected particulars of the candidate (+ and -) and former candidate (0) S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
designation Sp. cand. date $\log T_{\rm eff}$ MV $\log L/L_{\odot}$ ref. g?d? ref.
HD/HDE                  
80077 B2/3Ia+ + 1975-1995 4.23 (-9.4) (6.30) 38,236    
148937 O6.5f - 1960-1995 4.58 -6.0 5.68 132,170,    
              171    
WRA977 B1.5Ia+ 0 1970-1995 4.28 -8.7 6.06 39,59    
= BP Cru                  
= Hen788                  
AS314 B9Ia + 1983-1997 4.01 (-7.0) (4.9) 222 y y 222,223
= V452 Sct                  
= LS5017                  
IRC+10420a F8Ia+- + 1975-1994 3.90b (-10.0) (5.80) 260,284 y y 176,260,261,262,
  mid-Ab               286
MWC314 < B2 + 1954-1995 4.48 (-8.2) (6.34) 210,222    
= V1492 Aql                  
= BD+14 3887                  
G79.29+0.46   + 1983-2000 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ... 4.40   (6.3) 60 y 250
G25.5+0.2c   + 1983-1993   c   172 y 250
Pistol Star   + 1994-1998 4.15d -10.8 6.61d 265 y y 265
        4.33e -11.3 7.20e 265    
S18 B[e] - 1975-1995 4.40 -6.7 5.58 226    
5980f WN3+OB + min of       218,219,    
= R14     1950-1980       220    
  WN11+OB   max of   (-10.7)   pp    
      1994.8            
R78 B0Ia - 1960-1990 4.41 -7.4 5.80 45    
= 269050                  
R84 WN9 - 1960-1995 4.46 -6.8g 5.77 22 ? ? 173,250
= 269227                  
269604 A1Ia+ 0 1970-1985 3.96 -8.0 5.20 pp    
R128 B2Ia 0 1960-1995 4.24 -8.2 5.76 90    
= 269859                  


Notes to Table 11:
a Considered as a variable yellow hypergiant by (270) and (284). See the discussion in Sect. 3.2.5 of the present paper.
b According to (285) the spectral type evolved to mid-A in 1994. The temperature has been determined from that spectrum by (284). See also the discussion in Sect. 3.2.5 of the present paper.
c MK = -7 according to (172).
d Model L of (265).
e Model H of (265).
f Showed two SD-type eruptions, one in 1993 and a second in 1994. Since the true nature of the multiple star (including an eclipsing binary), is far from being understood, no proper physical and photometric parameters on the possible S Dor variable in the system can be given.
g The apparent visual magnitude has been corrected for the faint field stars in the aperture, see (8).


 
 
Table 12: Selected particulars of the candidate and former candidate S Dor variables
(1) (2) (3) (4) (5) (6) (7) (8)
designation $E(B-V)_{\rm J}$ ref. r ref. $V_{\rm J}$ ref. add.ref.
HD/HDE     (kpc)   mean   [Remarks]
80077 1.47 38,235 (3) 232,233 7.5 38,232 66,234
              [HDptm 1900 = 7.9;
              HDptg 1900 = 9.0]
148937 0.60 pp,171 1.38 132 6.7 170 174
WRA977 1.65 39,59 5-8 39,59 10.9 39  
AS314 0.9 222 (8) 222      
IRC+10420 2.2 175 (5) 175 11.0 175 176,177,270
MWC314 1.84 210 (3) 222 9.9 210  
G79.29+0.46 5-2 60,196 2-4 60,196     61
G25.5+0.2 10 172 (14.5) 172     173
Pistol Star 8-11 266 8 268     267
S18a 0.4 225     13.55a 227 228,229,230,231
5980b 0.07 218     c   213,214,216,217,220,221
R78 0.15 pp     11.7 8 9,10,49
              [HDptg 1925 = 11.2]
R84 0.18 26     12.1d 8,27 10,11,21,28,29,30,31
              [HDEptg 1925 = 11.6]
269604 0.10 pp     10.8 10  
R128 0.12 90     10.6 90,91 10,57
              [HDEptg 1925 = 10.9]


Notes to Table 12:
a Star strongly variable, see Table 13 and Fig. 19.
b There is an eclipsing binary in the system (215), with P = 19.2654d and an amplitude amounting to $\sim$0 $.\!\!^{\rm m}$2 (212).
c $V_{\rm J}$ (min) = 11.7, $V_{\rm J}$ (max) = 8.5 (83), (213).
d Corrected for the field stars in the aperture.


 
 
Table 13: Time scales and amplitudes of the light variations of the candidate and former candidate S Dor variables
(1) (2) (3) (4) (5)
designation cand microvar. ref. light curve
HD/HDE   (d, mag)    
80077a + 41-66 38,66  
    0.2a    
148937b -   170  
WRA977 0 11.90c 90  
    0.14    
AS314 +      
IRC+10420 +      
MWC314d + 4.16? 210  
    0.1    
G79.29+0.46 +      
G25.5+0.2 +      
Pistol Stare +      
S18f -     Fig. 19
5980g + 0.25g 212  
    0.1    
R78 - 3.6-3.9? 8,9  
    0.1    
R84 - h 8  
269604 0 ? 10  
    0.18    
R128 0 3.444 91  
    0.25    


Notes to Table 13:
a The maximum light amplitude, MLA = 0 $.\!\!^{\rm m}$2, is too high for a normal $\alpha $ Cyg variable (39). Therefore, it is not excluded that it may be partly due to a very weak SD-phase (38). Thus, this is in conflict with the supposition of (235) and (236) that it is no S Dor variable, but a hot blue hypergiant.
b The apparent magnitude $V_{\rm J}$ became gradually brighter on a long-term basis by $\sim$0 $.\!\!^{\rm m}$1 between 1960 and 1987. Between 1981 and 1987 the star showed microvariations $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...0 $.\!\!^{\rm m}$01 exclusively in blue and ultraviolet light on a time scale of months (170).
c This is a quasi-period which appeared to be stable on a time basis of 17yr (39).
d According to a compilation of optical photometry made between 1954 and 1992 by (210), $V_{\rm J}$ varied by $\sim$0 $.\!\!^{\rm m}$1. However, it is unknown whether this is caused by a long-term variation, or by microvariations, see Col. 3.
e The light variations in the H and K passbands lie barely outside the errors of the data (265).
f The long-term light variations with a time scale of months and an amplitude of $1^{\rm m}$, are no SD-phases, see Fig. 19. These observations are based on preliminary VBLUW photometry. The V of this system has been transformed to the V of the UBV system (with subscript J) (231).
g It is uncertain which of the stars in the system is responsible for the this pulsation-type of light variation (212).
h No significant light variation was detected during the photometric monitoring between 1988 and 1991.


   
Table 14: Bibliographical references mentioned in the Tables 1-6 and 8-13 are codified as follows
No. Reference No. Reference No. Reference
1 L. Smith et al. 1998 50 van Genderen et al. 1982 101 de Koter et al. 1996
2 Parker et al. 1993 51 Appenzeller et al. 1979 102 van Genderen et al. 1990
3 Walraven et al. 1977 53 van Genderen et al. 1984 103 de Koter et al. 1993b
4 Walborn et al. 1997 54 Percy et al. 1991 104 Lopes et al. 1992
5 Stahl et al. 1983 55 Leitherer et al. 1984 105 Sterken et al. 1995b
6 Stahl et al. 1986 56 Rivinius et al. 1997 106 Kozak 1985
7 van Genderen et al. 1997b 57 van Genderen 2000 107 Viotti 1971
8 van Genderen/Sterken 1999 58 Sterken et al. 1997a 108 Wisse et al. 1971
9 Feast et al. 1960 59 Kaper et al. 1995 109 de Koter et al. 1993a
10 Stahl et al. 1984a 60 Higgs et al. 1994 110 Hutsemékers et al. 1991
11 Stahl et al. 1985 61 Waters et al. 1996 111 van Genderen et al. 1991
12 Shore et al. 1984 62 Stahl et al. 1990 112 Clampin et al. 1995
13 Muratorio et al. 1988 63 van Genderen et al. 1998b 113 de Winter et al. 1992
14 Zickgraf et al. 1996b 64 Prinja et al. 1991 114 Hu et al. 1990
15 Zickgraf et al. 1986 65 Schild 1987 115 van Genderen et al. 1992a
16 Zickgraf et al. 1985 66 van Leeuwen et al. 1998 116 de Winter 1996
17 Friedjung et al. 1980 67 Zickgraf et al. 1996a 117 Wray 1966
18 Shore 1990 68 McGregor et al. 1988a 118 Henize 1976
19 Shore 1992 69 van Genderen et al. 1985 119 A. Jones et al. 1997
20 Schulte-Ladbeck et al. 1993 70 van Genderen et al. 1997a 120 Weis et al. 1997
21 Allen et al. 1976 71 Lamers 1995 121 McGregor et al. 1988b
22 Crowther et al. 1997 72 Stahl et al. 1982 122 Nota et al. 1997
23 Isserstedt 1975 73 Leitherer et al. 1985 123 Voors et al. 1997
24 Nota et al. 1995a 74 van Genderen 1979b 124 L Smith et al. 1997
25 Nota et al. 1994 75 Martini 1969 125 Whitelock et al. 1983b
26 Crowther et al. 1995 76 de Koter 1993 126 Garcia-Lario et al. 1998
27 Heydari-Malayeri et al. 1997b 77 Sterken et al. 1991 127 Schulte-Ladbeck et al. 1994
28 Vacca et al. 1990 78 Lamers et al. 1998 128 Shore et al. 1996
29 L. Smith et al. 1994 79 Hiltner 1954 129 Davidson et al. 1993
30 Walborn 1982 80 Sterken 1977 130 Henize 1952
31 Schmutz et al. 1991 81 Sterken 1981 131 Stahl 1986
32 Shore et al. 1990 82 Sterken 1976 132 Humphreys 1978
33 Hillier et al. 1998 83 Sterken et al. 1996c 133 Chini et al. 1980
34 Nota et al. 1996a 84 Sterken et al. 1997b 134 Zickgraf 1997
35 Nota et al. 1996b 85 Westerlund 1961 135 Stroud 1997
36 Robberto et al. 1998 86 Clayton et al. 1985 136 Szeifert et al. 1993
37 Hutsemékers et al. 1994 87 van Genderen 1970 137 Sterken et al. 1998
38 van Genderen et al. 1992b 88 Mendoza 1970 138 Venn 1997
39 van Genderen et al. 1996 89 Hiltner 1956 139 Wolf et al. 1981
40 Hofleit 1933 90 Walborn et al. 1991 140 Stahl et al. 1987
41 Hofleit 1940 91 van Genderen et al. 1998a 141 Brunet 1975
42 Lennon et al. 1994 92 Pasquali et al. 1997a 142 Najarro et al. 1997
43 van Genderen et al. 1988 93 Pasquali et al. 1997b 143 Lamers et al. 1983
44 Thackeray 1974 94 Stahl/Wolf 1987 144 Markova et al. 1997
45 van Genderen et al. 1983 95 Stahl et al. 1984a 145 Turner 1985
46 Spoon et al. 1994 96 Lamers et al. 1989 146 de Groot 1969
47 Voors et al. 1999 97 Humphreys et al. 1989 147 de Groot et al. 2001
48 Chentsov et al. 1990 98 Hoekzema et al. 1992 148 van Genderen 1991b
49 Ardeberg et al. 1972 99 Leitherer et al. 1994 149 Meaburn et al. 1996
50 Code et al. 1958 100 Sterken et al. 1996a 150 Lamers et al. 1992


   
Table 15: Continuation of Table 14
No. Reference No. Reference No. Reference
151 de Groot et al. 1992 201 Sterken et al. 1995a 251 L. Smith 1997
152 van Gent et al. 1986 202 Innes 1903 252 Skinner 1997
153 Pasquali et al. 1999 203 de Vaucouleurs et al. 1952 253 Sterken et al. 1999c
154 Bohannan et al. 1989 204 Percy et al. 1988 254 Pacheco et al. 1992
155 Weis et al. 1995 205 Whitelock et al. 1983 255 Skinner et al. 1998
156 Weis 1996 206 Whitelock et al. 1994 256 Appenzeller et al. 1987
157 Conti et al. 1986 207 Burki et al. 1982 257 Humphreys et al. 1994
158 Thompson et al. 1982 208 Schild et al. 1969 258 Walborn et al. 1978
159 Schulte 1958 209 Bieging et al. 1989 259 Lester et al. 1986
160 Reddish et al. 1967 210 Miroschnichenko 1996 260 Blöcker et al. 1999
161 Torres-Dodgen et al. 1991 211 van der Veen et al. 1994 261 Oudmaijer et al. 1994
162 Massey et al. 1991 212 Sterken et al. 1997 262 Klochkova et al. 1997
163 Gottlieb et al. 1978 213 Bateson et al. 1994 263 Hoekzema et al. 1993
164 Souza et al. 1980 214 Breysacher 1997 264 Viotti et al. 1988
165 Dufour et al. 1975 215 Breysacher et al. 1991 265 Figer et al. 1998
166 Warren et al. 1975 216 Moffat et al. 1998 266 Catchpole et al. 1990
167 C. Jones et al. 1974 217 Heydari-Malayeri et al. 1997a 267 Cotera et al. 1996
168 van Genderen et al. 1982 218 Koenigsberger et al. 1998b 268 Kaplan et al. 1970
169 Markova et al. 1998 219 Koenigsberger et al. 1998a 269 Hamann et al. 1994
170 van Genderen et al. 1989 220 Barba et al. 1995 270 de Jager 1998
171 Leitherer et al. 1987 221 Barba et al. 1997 271 Massey 2000
172 Subrahmanyari et al. 1993 222 Miroschnichenko et al. 1999 272 Massey et al. 2000
173 Hutsemékers 1997 223 Dong et al. 1991 273 Robberto et al. 1993
174 Leitherer et al. 1997 224 Vakili et al. 1999 274 Menshchikov 1989
175 T. Jones et al. 1993 225 Zickgraf et al. 1989a 275 Pasquali et al. 2000
176 Kastner et al. 1995 226 Zickgraf et al. 1989b 276 Polomski et al. 1999
177 Oudmaijer et al. 1996 227 Azzopardi et al. 1975 277 Sterken et al. 2001
178 van Genderen et al. 1994 228 McGregor et al. 1989 278 Morris et al. 1999
179 Burgarella et al. 1991 229 Shore et al. 1987 279 Weis 1999
180 Pottasch et al. 1976 230 Nota et al. 1995b 280 Langer et al. 1994
181 Davidson/Humphreys 1997 231 van Genderen/Sterken 2001 281 Stothers 1999b
182 van Genderen et al. 1984 232 Steemers et al. 1986 282 Bohigas et al. 2000
183 P. Cox et al. 1995 233 Moffat et al. 1977 283 Icke 1981
184 van Genderen et al. 1999 234 Knoechel et al. 1982 284 Nieuwenhuijzen et al. 2000
185 Damineli et al. 1997 235 Carpay et al. 1989 285 Oudmaijer 1998
186 Ebbets et al. 1997 236 Carpay et al. 1991 286 Oudmaijer 1995
187 Sterken et al. 1996b 237 Markova 1986 287 Damineli et al. 2000
188 van Genderen et al. 1995 238 Kolka 1983 288 Davidson et al. 2000
189 Meaburn et al. 1993 239 Israelian et al. 1999 289 N. Smith et al. 2000
190 Hillier et al. 1992 240 Barlow et al. 1994 290 Pantin et al. 2000
191 Viotti et al. 1989 241 Meaburn et al. 1999 291 Voors et al. 2000
192 Sterken et al. 1999a 242 Glover et al. 1997 292 Duschl et al. 1995
193 Damineli 1996 243 Davidson et al. 1999 293 Gäng 2000
194 Allen et al. 1993 244 Smith-Neubig et al. 1999 294 Viotti et al. 1999
195 Stothers et al. 1997 245 Sterken et al. 1999b 295 Corcoran et al. 1999
196 Voors 1999 246 de Groot et al. 1997a 296 Duncan et al. 1999
197 van Genderen 1979a 247 de Groot et al. 1997b 297 Weis 2000
198 Manfroid et al. 1991 248 de Groot et al. 1996b 298 van Genderen et al. 2001
199 Sterken et al. 1993 249 Kolka 1999 299 Walsh et al. 2000
200 Manfroid et al. 1994 250 Nota/Clampin 1997    


 
 
Table 16: Overview of the presumable trends of the brightness in the intervals before 1950 and between 1950 and 2000, their amplitudes, the duration of the low stages and the time scales, for 17 S Dor variables
designation category brightness/activity ampl. $t_{\rm trend}$ $t_{\rm low}$ references
HD/HDE   <1950 1950-2000 (mag) (yr) (yr)  
160529a s-a (high) high 0.5     Fig. 2
WRA751 s-a high low 2 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...35 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...10 Fig. 3
R40 s-a low high 0.8 35   7,137; Tables 2 and 3
R71b s-a high lowb 1.7 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...25 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...15 Fig. 4
R110 s-a (low) high 1.1 35   Fig. 5
R116 s-a high low 1.2 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...40 40-70 Fig. 6
R127 s-a low high 2.4 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...20 10 Fig. 7
R143 s-a high low 1.4 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...20 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...10 Fig. 8
HV5495 s-a high low 1.5   ( $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...20) Fig. 10
P Cygc w-a   low     $\sim$300 147,150,151
168607 w-a low high 0.7 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...55   38,66,80,253;
              Tables 5 and 6
R81 w-a high low 0.9 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...70 50 Fig. 12
R123 w-a high low 1.2 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...50 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...20 Fig. 15
$\zeta^{1}$ Sco ex/d high low 2 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...100 100 58; Tables 9 and 10
168625d ex/d low high 0.8 $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...55   38,66,80,253;
              Tables 9 and 10
He3-519 ex/d (high) (low) (0.5) ( $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...35)   Tables 9 and 10
S119 ex/d (high) (low) (0.5) ( $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ...45)   Tables 9 and 10


Notes to Table 16:
a According to Fig. 2, the star is probably active since at least 1890, thus $t_{\rm high}$ $\sim$110yr.
b The star was also ``high'' between 1970 and 1980, but much less than before 1950. After 1980 and until 1995 the star behaved as a w-a S Dor variable. New observations have been made by Sterken after 1995. The results will be published in due course.
c It is unknown whether the ``high'' state in the 17th century was only due to SD-eruptions, or whether also SD-phases were involved.
d This star seems to be brighter at present (thus, in the interval 1950-2000) than around 1900, but there is no SD-activity detected in the present photometry.


 
 
Table 17: Numbers of S Dor variables in the SMC, LMC and the Galaxy (G)
type $N_{\rm obs}$SMC $N_{\rm obs}$LMC $N_{\rm obs}$G mult.fa $N_{\rm tot}$G
s-a 2 8 4 4 16
w-a 0 8 4b 22 66
ex-/d 0 3 5 22 110
cand (+) 1 0 7    
Total 3 19 20   192


Notes to Table 17:
a Adopting for the galactic disk a radius of 12kpc.
b With the omission of He3-519 (r = (8)kpc), it leaves 3 objects for the computation of $N_{\rm tot}$G.


  \begin{figure}
\includegraphics[width=8.8cm,clip]{sdfig2.eps} \end{figure} Figure 2: The schematic light curve (ptm and $V_{\rm J}$) versus JD (panel at the left) and JD-2400000 (panel at the right) of the s-a S Dor variable HD160529 in the Galaxy. Note that the scale after 1950 is 2 1/2 times larger than before 1950


  \begin{figure}
\includegraphics[width=6.5cm,clip]{sdfig3.eps} \end{figure} Figure 3: The schematic light curve ($V_{\rm J}$) versus JD-2400000 of the s-a S Dor variable WRA751 in the Galaxy. After 1990 the $\alpha $ Cyg-type microvariations are sketched on scale


  \begin{figure}
\includegraphics[width=8.8cm,clip]{sdfig4.eps}\end{figure} Figure 4: The schematic light curve (ptm, ptg and $V_{\rm J}$) versus JD of the s-a S Dor variable R71 in the LMC


  \begin{figure}
\includegraphics[width=8.8cm,clip]{sdfig5.eps}\end{figure} Figure 5: The schematic light curve (ptg and $V_{\rm J}$) versus JD-2400000 of the s-a S Dor variable R110 in the LMC


  \begin{figure}
\includegraphics[width=8.8cm,clip]{sdfig6.eps}\end{figure} Figure 6: The schematic light curve (ptm, ptg and $V_{\rm J}$) versus JD of the s-a S Dor variable R116 in the LMC. The $\alpha $ Cyg-type microvariations observed in detail after 1990 are sketched on scale


  \begin{figure}
\includegraphics[width=8cm,clip]{sdfig7.eps}\end{figure} Figure 7: The schematic light curve (ptg and $V_{\rm J}$) versus JD-2400000 of the s-a S Dor variable R127 in the LMC


  \begin{figure}
\includegraphics[width=6.5cm,clip]{sdfig8.eps}\end{figure} Figure 8: The schematic light curve (($V_{\rm J}$) versus JD-2400000 of the s-a S Dor variable R143 in the LMC


  \begin{figure}
\includegraphics[width=5cm,clip]{sdfig9.eps}\end{figure} Figure 9: The schematic light curve (ptg and $V_{\rm J}$) versus JD-2400000 of the s-a S Dor variable HDE269216 in the LMC


  \begin{figure}
\includegraphics[width=8cm,clip]{sdfig10.eps}\end{figure} Figure 10: The schematic light curve (ptg and $V_{\rm J}$) versus JD-2400000 of the s-a S Dor variable HV5495 in the LMC


  \begin{figure}
\includegraphics[width=8cm,clip]{sdfig12.eps}\end{figure} Figure 12: The schematic light curve (ptm, ptg and $V_{\rm J}$) versus JD of the w-a S Dor variable R81 in the LMC. The two dotted lines labeled ``max'' and ``min'' represent the ranges of the light curve due to the eclipses of the binary


  \begin{figure}
\includegraphics[width=6cm,clip]{1896F14new.eps} %
\end{figure} Figure 14: The schematic light curve (ptg and $V_{\rm J}$) versus JD-2400000 showing an L-SD cycle of the w-a S Dor variable R99 in the LMC. The two horizontal line pieces at the right represent the ranges of the $\alpha $ Cyg-type microvariations of which the averages are indicated by the dots


  \begin{figure}
\includegraphics[width=8.8cm,clip]{sdfig15.eps}\end{figure} Figure 15: The schematic light curve (ptm and $V_{\rm J}$) versus JD (panel at the left) and JD-2400000 (panel at the right) of the w-a S Dor variable R123 in the LMC. The low-amplitude S-SD phases around 1990 are schematically indicated on scale. Obviously, the star stopped its strong-activity just after 1900


  \begin{figure}
\includegraphics[width=8cm,clip]{sdfig17.eps}\end{figure} Figure 17: The schematic light curve (ptg and $V_{\rm J}$) versus JD-2400000 of the w-a S Dor variable HD38489 in the LMC


  \begin{figure}
\includegraphics[width=5cm,clip]{sdfig18.eps}\end{figure} Figure 18: The magnitude-colour diagram of the w-a S Dor variable HD38489 in the LMC


  \begin{figure}
\includegraphics[width=5.1cm,clip]{sdfig19.eps}\end{figure} Figure 19: The schematic light curve ($V_{\rm J}$) versus JD-2440000 of the candidate (-) S Dor/B[e] variable S18 in the SMC based on VBLUW photometry. The cause of the variations is still unknown, but they are certainly no SD-phases


next previous
Up: S Doradus variables in the Clouds

Copyright ESO 2001