Issue |
A&A
Volume 671, March 2023
|
|
---|---|---|
Article Number | A51 | |
Number of page(s) | 12 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/202245699 | |
Published online | 07 March 2023 |
Rate coefficients for rotational state-to-state transitions in H2O + H2O collisions for cometary and planetary applications, as predicted by mixed quantum-classical theory★
Department of Chemistry, Marquette University,
Milwaukee,
WI 53233,
USA
e-mail: dmitri.babikov@marquette.edu
Received:
14
December
2022
Accepted:
16
January
2023
Aims. We present new calculations of collision cross sections for state-to-state transitions between the rotational states in an H2O + H2O system, which are used to generate a new database of collisional rate coefficients for cometary and planetary applications.
Methods. Calculations were carried out using a mixed quantum-classical theory approach that is implemented in the code MQCT. The large basis set of rotational states used in these calculations permits us to predict thermally averaged cross sections for 441 transitions in para- and ortho-H2O in a broad range of temperatures.
Results. It is found that all state-to-state transitions in the H2O + H2O system split into two well-defined groups, one with higher cross-section values and lower energy transfer, which corresponds to the dipole-dipole driven processes. The other group has smaller cross sections and higher energy transfer, driven by higher-order interaction terms. We present a detailed analysis of the theoretical error bars, and we symmetrized the state-to-state transition matrixes to ensure that excitation and quenching processes for each transition satisfy the principle of microscopic reversibility. We also compare our results with other data available from the literature for H2O + H2O collisions.
Key words: molecular data / submillimeter: planetary systems / ISM: molecules / planets and satellites: fundamental parameters / astronomical databases: miscellaneous / comets: general
The code is only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/671/A51
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.