Issue |
A&A
Volume 641, September 2020
|
|
---|---|---|
Article Number | A164 | |
Number of page(s) | 11 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202038657 | |
Published online | 25 September 2020 |
Shear measurement bias
I. Dependencies on methods, simulation parameters, and measured parameters
1
DEDIP/DAP, IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
e-mail: arnaupv@gmail.com
2
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
3
Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland
4
Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France
Received:
15
June
2020
Accepted:
28
July
2020
We present a study of the dependencies of shear bias on simulation (input) and measured (output) parameters, noise, point-spread function anisotropy, pixel size, and the model bias coming from two different and independent galaxy shape estimators. We used simulated images from GALSIM based on the GREAT3 control-space-constant branch, and we measured shear bias from a model-fitting method (GFIT) and a moment-based method (Kaiser-Squires-Broadhurst). We show the bias dependencies found on input and output parameters for both methods, and we identify the main dependencies and causes. Most of the results are consistent between the two estimators, an interesting result given the differences of the methods. We also find important dependences on orientation and morphology properties such as flux, size, and ellipticity. We show that noise and pixelization play an important role in the bias dependencies on the output properties and galaxy orientation. We show some examples of model bias that produce a bias dependence on the Sérsic index n as well as a different shear bias between galaxies consisting of a single Sérsic profile and galaxies with a disc and a bulge. We also see an important coupling between several properties on the bias dependences. Because of this, we need to study several measured properties simultaneously in order to properly understand the nature of shear bias. This paper serves as a first step towards a companion paper that describes a machine learning approach to modelling shear bias as a complex function of many observed properties.
Key words: gravitational lensing: weak / methods: observational / methods: statistical
© A. Pujol et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.