Issue |
A&A
Volume 397, Number 2, January II 2003
|
|
---|---|---|
Page(s) | 595 - 609 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361:20021478 | |
Published online | 17 December 2002 |
The dust disk of HR 4049
Another brick in the wall
1
Sterrenkundig Instituut “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: dominik@science.uva.nl
2
Max Planck Institut für Astrophysik, Karl Schwarzschild Strasse 1, 85748 Garching, Germany e-mail: dullemon@mpa-garching.mpg.de
3
SRON-Groningen, PO Box 800, 9700 AV Groningen, The Netherlands e-mail: cami@astro.rug.nl
4
Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Heverlee, Belgium e-mail: Hans.VanWinckel@ster.kuleuven.ac.be
Corresponding author: C. Dominik, dominik@science.uva.nl
Received:
6
March
2002
Accepted:
8
October
2002
We present the Spectral Energy Distribution of HR 4049
based on literature data and new continuum measurements at 850 μm. The SED shows variable absorption in the UV, and a large IR
excess, both caused by circumstellar dust. The shape of the IR
excess from 1 μmall the way down to 850 μmcan be nearly
perfectly fitted with a single blackbody function at K or alternatively with a sum of blackbodies in a narrow
temperature range. The energy emitted in this IR continuum radiation
is about one-third of the stellar luminosity. We show that this
blackbody radiation must be due to the presence of a circumbinary
disk with a large height. This disk must also be gas-rich, in
agreement with the observations of molecular bands in the ISO-SWS
spectrum. We present two possible scenario's for explaining the
shape and the intensity of the IR excess. The first scenario
involves large grains (
mm) that each radiate like a
blackbody. The second scenario argues that the blackbody radiation
is due to a very optically thick circumbinary disk. We investigate
if such a disk would indeed produce blackbody radiation by
presenting results from radiative transfer calculations. We further
quantify the properties of such a disk and its stability in the
framework of (hydro)dynamics, grain settling, radiation pressure and
grain drift. The virtues and shortcomings of both models for the
origin of the IR blackbody are discussed by contrasting them with
other observations and assessing them in the framework of (binary)
(post-)AGB evolution.
Key words: circumstellar matter / infrared: stars / binaries: spectroscopic / stars: evolution / stars: variables: general
© ESO, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.