EDP Sciences
Free access
Issue A&A
Volume 428, Number 1, December II 2004
Page(s) 261 - 285
Section Celestial mechanics and astrometry
DOI http://dx.doi.org/10.1051/0004-6361:20041335



A&A 428, 261-285 (2004)
DOI: 10.1051/0004-6361:20041335

A long-term numerical solution for the insolation quantities of the Earth

J. Laskar1, P. Robutel1, F. Joutel1, M. Gastineau1, A. C. M. Correia1, 2 and B. Levrard1

1  Astronomie et Systèmes Dynamiques, IMCCE - CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France
    e-mail: laskar@imcce.fr
2  Departamento de Física da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

(Received 23 May 2004 / Accepted 11 August 2004)

Abstract
We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from  -250 Myr to 250 Myr. This solution has been improved with respect to La93 (Laskar et al. 1993) by using a direct integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular in the evolution of the Earth-Moon System. The orbital solution has been used for the calibration of the Neogene period (Lourens et al. 2004), and is expected to be used for age calibrations of paleoclimatic data over 40 to 50 Myr, eventually over the full Palaeogene period (65 Myr) with caution. Beyond this time span, the chaotic evolution of the orbits prevents a precise determination of the Earth's motion. However, the most regular components of the orbital solution could still be used over a much longer time span, which is why we provide here the solution over 250 Myr. Over this time interval, the most striking feature of the obliquity solution, apart from a secular global increase due to tidal dissipation, is a strong decrease of about  0.38 degree in the next few millions of years, due to the crossing of the  s6+g5-g6 resonance (Laskar et al. 1993). For the calibration of the Mesozoic time scale (about 65 to 250 Myr), we propose to use the term of largest amplitude in the eccentricity, related to  g2-g5, with a fixed frequency of  3.200''/yr, corresponding to a period of 405 000 yr. The uncertainty of this time scale over 100 Myr should be about  $0.1\%$, and  $0.2\%$ over the full Mesozoic era.


Key words: chaos -- celestial mechanics -- ephemerides -- Earth




© ESO 2004

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access. An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.
  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account. In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.

Editor-in-Chief: T. Forveille
Letters Editor-in-Chief: J. Alves
Managing Editor: C. Bertout

ISSN: 0004-6361 ; e-ISSN: 1432-0746
Frequency: 12 volumes per year
Published by: EDP Sciences

Mirror sites: CDS | EDP Sciences
  RSS feeds
© The European Southern Observatory (ESO)