EDP Sciences
Free access
Volume 508, Number 2, December III 2009
Page(s) 869 - 876
Section Stellar structure and evolution
DOI http://dx.doi.org/10.1051/0004-6361/200912699
Published online 04 November 2009
A&A 508, 869-876 (2009)
DOI: 10.1051/0004-6361/200912699

Impact of helium diffusion and helium-flash-induced carbon production on gravity-mode pulsations in subdwarf B stars

Haili Hu1, 2, G. Nelemans1, C. Aerts1, 2, and M.-A. Dupret3

1  Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
    e-mail: hailihu@astro.ru.nl
2  Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
3  Institute d'Astrophysique et Géophysique, université de Liège, Belgium

Received 15 June 2009 / Accepted 1 October 2009

Context. Realistic stellar models are essential to the forward modelling approach in asteroseismology. For practicality however, certain model assumptions are also required. For example, in the case of subdwarf B stars, one usually starts with zero-age horizontal branch structures without following the progenitor evolution.
Aims. We analyse the effects of common assumptions in subdwarf B models on the g-mode pulsational properties. We investigate if and how the pulsation periods are affected by the H-profile in the core-envelope transition zone. Furthermore, the effects of C-production and convective mixing during the core helium flash are evaluated. Finally, we reanalyse the effects of stellar opacities on the mode excitation in subdwarf B stars.
Methods. We computed detailed stellar evolutionary models of subdwarf B stars, and their non-adiabatic pulsational properties. Atomic diffusion of H and He is included consistently during the evolution calculations. The number fractions of Fe and Ni are gradually increased by up to a factor of 10 around log T = 5.3. This is necessary for mode excitation and to approximate the resulting effects of radiative levitation. We performed a pulsational stability analysis on a grid of subdwarf B models constructed with OPAL and OP opacities.
Results. We find that helium settling causes a shift in the theoretical blue edge of the g-mode instability domain to higher effective temperatures. This results in a closer match to the observed instability strip of long-period sdB pulsators, particularly for l $\leq$ 3 modes. We show further that the g-mode spectrum is extremely sensitive to the H-profile in the core-envelope transition zone. If atomic diffusion is efficient, details of the initial shape of the profile become less important in the course of evolution. Diffusion broadens the chemical gradients, and results in less effective mode trapping and different pulsation periods. Furthermore, we report on the possible consequences of the He-flash for the g-modes. The outer edge of a flash-induced convective region introduces an additional chemical transition in the stellar models, and the corresponding spike in the Brünt-Väisälä frequency produces a complicated mode trapping signature in the period spacings.

Key words: subdwarfs -- stars: evolution -- stars: oscillations -- methods: numerical

© ESO 2009