EDP Sciences
The CoRoT space mission: early results
Free access
Volume 506, Number 1, October IV 2009
The CoRoT space mission: early results
Page(s) 391 - 398
Section Planets and planetary systems
DOI http://dx.doi.org/10.1051/0004-6361/200911916
Published online 02 July 2009
A&A 506, 391-398 (2009)
DOI: 10.1051/0004-6361/200911916

Planet formation by nucleated-instability: comparison with the two first CoRoT runs

Y. Alibert1, 2, F. Pont3, I. Baraffe4, C. Reylé1, C. Mordasini5, 2, D. Queloz6, W. Benz2, and S. Udry6

1  Institut UTINAM, CNRS-UMR 6213, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France
    e-mail: [alibert;celine]@obs-besancon.fr
2  Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
    e-mail: wbenz@space.unibe.ch
3  School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
    e-mail: fpont@astro.ex.ac.uk
4  École normale supérieure de Lyon, CRAL (CNRS), Université de Lyon, 46 allée d'Italie, 69007 Lyon, France
    e-mail: [ibaraffe;chabrier]@ens-lyon.fr
5  Max-Planck Institute for Astronomy, Konigstuhl 17, 69117 Heidelberg, Germany
    e-mail: mordasini@mpia-hd.mpg.de
6  Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland
    e-mail: [didier.queloz;Stephane.Udry]@obs.unige.ch

Received 20 February 2009 / Accepted 1 July 2009

Aims. We use extended planet formation models to analyse the results the two first runs of CoRoT, namely the initial one (IRa01) and the first long one (LRc01). We compare our calculations to the actual observations and discuss the possible origins of the differences between the two, not only in term of detection rate, but also regarding the magnitude of transiting planets parent stars.
Methods. We use a galactic population synthesis model in order to calculate the characteristics of stars in the field-of-view of CoRoT. In a second step, we calculate planet formation models to derive the population of planets expected around these stars. In a third step, using planet evolution models, we calculate the radius of planets predicted by the model and estimate the probability of transit detection and confirmation by radial-velocity follow-up.
Results. Our calculations show that the present day CoRoT detection rate, based only on IRa01 and LRc01, is a factor 5 lower than the one predicted assuming all target are dwarf stars. On the other hand, the two detection rates become similar if one assumes some contamination of CoRoT targets by giant stars, or some less optimistic determinations of the noise level, the limiting signal-to-noise ratio and radial velocity follow-up performances. However, in all the cases we have considered, the majority of transits are found around faint stars, in conflict with the actual CoRoT detections.

Key words: planetary systems -- planetary systems: formation -- planetary systems: protoplanetary disks -- planets and satellites: formation

© ESO 2009