EDP Sciences
Free access
Volume 495, Number 2, February IV 2009
Page(s) 457 - 469
Section Extragalactic astronomy
DOI http://dx.doi.org/10.1051/0004-6361:200810629
Published online 14 January 2009
A&A 495, 457-469 (2009)
DOI: 10.1051/0004-6361:200810629

Stellar population analysis on local infrared-selected galaxies

X. Y. Chen1, 2, Y. C. Liang1, F. Hammer3, Y. H. Zhao1, and G. H. Zhong1, 4

1  National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, 100012 Beijing, PR China
    e-mail: [chenxy;ycliang]@bao.ac.cn
2  Graduate School of the Chinese Academy of Sciences, 100049 Beijing, PR China
3  GEPI, Observatoire de Paris-Meudon, 92195 Meudon, France
4  Department of Physics, Hebei Normal University, 050016 Shijiazhuang, PR China

Received 17 July 2008 / Accepted 25 November 2008

Aims. We study the stellar population of local infrared galaxies, which contain star-forming galaxies, composite galaxies, LINERs, and Seyfert 2s. We also want to find whether infrared luminosity and spectral class have any effect on their stellar populations.
Methods. The sample galaxies are selected from the main galaxy sample of SDSS-DR4 and then cross-correlated with the IRAS-PSCz catalog. We fit our spectra (stellar absorption lines and continua) using the spectral synthesis code STARLIGHT based on the templates of simple stellar population and the spectra of star clusters.
Results. Among the 4 spectral classes, LINERs present the oldest stellar populations, and the other 3 subsamples all present substantial young and intermediate age populations and very few old populations. The importance of young populations decreases from star-forming, composite, Seyfert 2 to LINER. As for the different infrared luminosity bins, ULIGs & LIGs (log( $L_{\rm IR}/L_{\odot})$ $\geq$ 11) present younger populations than do starbursts and normal galaxies; however, the dominant contributors to mass are old populations in all sample galaxies. The fittings also give consistent results by using the spectra of star clusters with different ages and metallicities as templates. The dominated populations in star-forming and composite galaxies are those with metallicity $Z=0.2~Z_\odot$, while LINERs and Seyfert 2s are more metal-rich. The normal galaxies are more metal-rich than the ULIGs & LIGs and starbursts for the star-forming galaxies within different infrared luminosity bins.
Additionally, we compare some synthesis results with other parameters obtained from the MPA/JHU catalog. First we find that the stellar and nebular extinctions are correlated, and the ionized gas suffers twice as much extinction as stars. Second we confirm that  Dn(4000) is a much better age indicator than $H\delta_{A}$. Following the evolution of galaxies, Dn(4000) monotonously varies. Finally we investigate some relationships between mean stellar age, mean stellar metallicity, and nebular metallicity for the subsample of star-forming galaxies. In star-forming galaxies, the nebular metallicity  $Z_{\rm neb}$ is correlated with the light-weighted mean stellar age $\langle\,\log\,t_{\ast}\rangle_{\rm L}$ in an intermediate strength, and $Z_{\rm neb}$ is weakly correlated with the mass-weighted mean stellar metallicity  $\langle\,Z_{\ast}\rangle_{\rm M}$.

Key words: galaxies: evolution -- infrared: galaxies -- galaxies: stellar content

© ESO 2009