EDP Sciences
Free access
Volume 482, Number 2, May I 2008
Page(s) 575 - 583
Section Interstellar and circumstellar matter
DOI http://dx.doi.org/10.1051/0004-6361:20078494
Published online 18 February 2008

A&A 482, 575-583 (2008)
DOI: 10.1051/0004-6361:20078494

Investigating the transport of angular momentum from young stellar objects

Do H $_{\mathsf 2}$ jets from class I YSOs rotate?
A. Chrysostomou1, F. Bacciotti2, B. Nisini3, T. P. Ray4, J. Eislöffel5, C. J. Davis6, and M. Takami7

1  Centre for Astrophysics Research, Science & Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9AB, UK
    e-mail: a.chrysostomou@herts.ac.uk
2  INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Florence, Italy
3  INAF - Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone, Italy
4  School of Cosmic Physics, Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
5  Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenberg, Germany
6  Joint Astronomy Centre, 660 N. A'ohoku Place, Hilo, Hawaii 96720, USA
7  Subaru Telescopes, 650 N. A'ohoku Place, Hilo, Hawaii 96720, USA

(Received 16 August 2007 / Accepted 8 February 2008)

Aims. In this pilot study, we examine molecular jets from the embedded Class I sources, HH 26 and HH 72, to search, for the first time, for kinematic signatures of jet rotation from young embedded sources.
Methods. High-resolution long-slit spectroscopy of the H2 1-0 S(1) transition was obtained using VLT/ISAAC. The slit was placed perpendicular to the flow direction about 2$\arcsec$ from the sources. Position-velocity (PV) diagrams are constructed and intensity-weighted radial velocities transverse to the jet flow are measured.
Results. Mean intensity-weighted velocities vary between $v_{\rm LSR} \sim -90$ and -65 km s-1 for HH 26, and -60 and -10 km s-1 for HH 72; maxima occur close to the intensity peak and decrease toward the jet borders. Velocity dispersions are ~45 and ~80 km s-1 for HH 26 and HH 72, respectively, with gas motions as fast as -100 km s-1 present. Asymmetric PV diagrams are seen for both objects, which a simple empirical model of a cylindrical jet section shows could in principle be reproduced by jet rotation alone. Assuming magneto-centrifugal launching, the observed HH 26 flow may originate at a disk radius of 2-4 AU from the star with the toroidal component of the magnetic field dominant at the observed location, in agreement with magnetic collimation models. We estimate that the kinetic angular momentum transported by the HH 26 jet is ~ $2 \times10^{-5}\,M_\odot$ yr-1 AU km s-1. This value (a lower limit to the total angular momentum transported by the flow) already amounts to 70% of the angular momentum that has to be extracted from the disk for the accretion to proceed at the observed rate.
Conclusions. These results of this pilot study suggest that jet rotation may also be present at early evolutionary phases and support the hypothesis that they carry away excess angular momentum, thus allowing the central protostar to increase its mass.

Key words: ISM: Herbig-Haro objects -- ISM: jets and outflows -- ISM: kinematics and dynamics -- ISM: individual objects: HH 26 -- ISM: individual objects: HH 72

© ESO 2008