Circumstellar disks around Herbig Be stars
(Corrigendum)

T. Alonso-Albi1, A. Fuente1, R. Bachiller1, R. Neri2, P. Planesas1,3, L. Testi4,6, O. Berné5, and C. Joblin5

1 Observatorio Astronómico Nacional, Apdo. 112, 28803 Alcalá de Henares, Madrid, Spain
e-mail: t.alonso@oan.es
2 Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire de Grenoble, 38406 St. Martin d’Hères, France
3 Atacama Large Millimeter/Submillimeter Array, Joint ALMA Office, Santiago, Chile
4 INAF–Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
5 Centre d’Étude Spatiale des Rayonnements, CNRS et Université Paul Sabatier Toulouse 3, Observatoire Midi-Pyrénées, 9 Av. du Colonel Roche, 31028 Toulouse Cedex 04, France
6 European Southern Observatory, Karl Schwarzschild str. 2, 85748 Garching, Germany

A&A 497, 117–136 (2009), DOI: 10.1051/0004-6361/200810401

Key words. stars: formation – stars: pre-main sequence – circumstellar matter – planetary systems: formation – errata, addenda – planetary systems: protoplanetary disks

In Sect. 6.2, Table 7 has incorrect values for the mass-loss rates and dissipation timescales. The correct values for the mass-loss rates, calculated with Eq. (11) by Alexander (2008), are given in the following table.

One of the key points in our discussion was calculating the dissipation timescales for disks around Herbig Be stars. The compilation of disk masses presented in Table A.13 shows that the highest disk mass expected in Be stars is close to 1 M_\odot, so in addition to the mass-loss rate we also presented and discussed the expected dissipation time for a disk of 1 M_\odot, finding it to be around 105 years.

The new values of the mass-loss rates are 10–20 times lower than before. In view of this, the disk mass presented in the compilation table is probably overestimated for the youngest objects in our sample, since we can expect a dense envelope (and outflow) around them. In Fig. 8 we only have upper limits or single-dish observations above 0.1 M_\odot, with the exception of Z CMa (probably the youngest object in our sample), in which the disk mass is overestimated by a factor three with respect to the modeling, which gives a value close to 0.1 M_\odot. For this reason we have recalculated the expected disk lifetime for a mass of 0.1 M_\odot in the previous table. The values for the disk lifetime are only slightly higher than before, therefore the discussion and conclusions remain valid.

Acknowledgements. We thank Willem-Jan de Wit for pointing out this error.

References

Table 1. Dissipation timescale.

<table>
<thead>
<tr>
<th>Source</th>
<th>R_g^{a} (AU)</th>
<th>Mass-loss rate (M_\odot/yr)</th>
<th>Lifetime$^{\text{b}}$ (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWC 137</td>
<td>124.6</td>
<td>6.1×10^{-7}</td>
<td>1.6×10^5</td>
</tr>
<tr>
<td>LKH\textsubscript{215}</td>
<td>62.3</td>
<td>1.1×10^{-7}</td>
<td>9.5×10^5</td>
</tr>
<tr>
<td>R Mon</td>
<td>71.2</td>
<td>2.2×10^{-7}</td>
<td>4.4×10^5</td>
</tr>
<tr>
<td>Z CMa</td>
<td>106.8</td>
<td>1.2×10^{-7}</td>
<td>8.1×10^5</td>
</tr>
<tr>
<td>MWC 297</td>
<td>80.1</td>
<td>2.6×10^{-7}</td>
<td>3.8×10^5</td>
</tr>
<tr>
<td>MWC 1080</td>
<td>89.0</td>
<td>2.5×10^{-7}</td>
<td>4.0×10^5</td>
</tr>
</tbody>
</table>

Notes. a Gravitational radius calculated following Eq. (1) by Alexander (2008). b Time required to disperse a disk of 0.1 M_\odot.