A peculiar type-I X-ray burst from GRS 1747-312

J. J. M. in ’t Zand1,2, T. E. Strohmayer3, C. B. Markwardt4, and J. Swank3

1 SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
2 Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands
3 NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA
4 Dept. of Astronomy, University of Maryland, College Park, MD 20742, USA

Received 19 May 2003 / Accepted 3 July 2003

Abstract. We report the serendipitous detection with the Rossi X-ray Timing Explorer of a long and peculiar X-ray burst whose position is consistent with one known X-ray burster (GRS 1747-312) and which occurred when that source was otherwise quiescent. The peculiar feature concerns a strong radius expansion of the neutron star photosphere, which occurred not within a few seconds from the start of the burst, as is standard in radius-expansion bursts, but 20 s later. This suggests that two different layers of the neutron star may have undergone thermonuclear runaways: a hydrogen-rich and a hydrogen-poor layer. The reason for the delay may be related to the source being otherwise quiescent.

Key words. accretion, accretion disks – globular clusters: individual: Terzan 6 – X-rays: binaries – X-rays: bursts – X-rays: individuals: GRS 1747-312

1. Introduction

GRS 1747-312 is a transient X-ray source that is located in the core of the 9.5 kpc distant globular cluster Terzan 6 (Predel et al. 1991; Pavlinsky et al. 1994; Verbunt et al. 1995; in ’t Zand et al. 2003). The heart of the source is a neutron star in a binary system with a low-mass, Roche lobe filling star. X-ray outbursts occur every 4.5 months and last 1 month; the neutron star is completely eclipsed by the companion star every 12.4 hrs (in ’t Zand et al. 2000, 2003). The neutron star nature was established through the detection of seven type-I X-ray bursts. Such bursts are clear markers of thermonuclear runaway processes on the surfaces of neutron stars (for reviews, see Lewin et al. 1993 and Strohmayer & Bildsten 2003). All bursts were short-lived and occurred while the source was otherwise X-ray active. In April 2002 GRS 1747-312 happened to be in the field of view of the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) while it was pointed at another target, and a long type-I X-ray burst was detected with peculiar features that may add to the understanding of unstable nuclear burning on neutron star surfaces. Here we discuss this event.

2. Observations

The PCA (for a detailed description, see Jahoda et al. 1996) on RXTE comprises 5 co-aligned Proportional Counter Units (PCUs) that are sensitive to 2 to 60 keV photons. The total collecting area is 6500 cm2. The spectral resolution is 18% full-width at half maximum (FWHM) at 6 keV and the field of view is 1° FWHM. During April 4 through 30, 2002, the PCA was employed in a target-of-opportunity (ToO) program on the newly discovered accreting millisecond pulsar and transient source XTE J1751-305 (Markwardt et al. 2002) which is located 40' from GRS 1747-312. The program accumulated 398 ks of net exposure time. GRS 1747-312 was not in outburst during these serendipitous observations. On the very last day of observations an X-ray burst was detected. Figure 1 shows the result of the localization of this burst following a method (Strohmayer et al. 1997) that employs the small misalignments of the three PCUs that were active during the burst (PCUs 0, 2 and 3). While XTE J1751-305 is excluded as the origin of the burst at the >90% confidence level, the error region is consistent with GRS 1747-312 being the origin. Furthermore, no other X-ray burster is known within the 90% confidence contour. It should be mentioned that the light curve of XTE J1751-305 (see Fig. 1 in Markwardt et al. 2002) shows a small outburst to a level of 0.3 mCrab starting three days before the burst. Given the collimator response to GRS 1747-312 in these observations, this translates to a level of 1.1 mCrab if the outburst would have been due to GRS 1747-312. Since this level is excluded by independent observations of GRS 1747-312 (see Fig. 5 in which 1.1 mCrab is equivalent to 12 phot s⁻¹ per 5 PCUs), GRS 1747-312 is ruled out as the source of the outburst.

3. Time-resolved spectroscopy and timing analysis

Figure 2 shows the light curve of the burst in various band-passes. It is characterized by a duration of 320 ± 10 s and a
rise time of 3 s. The full-bandpass light curve shows a plateau for the first \(\approx 70 \) s strongly suggesting that the Eddington limit is reached. There is one particularly peculiar feature about this burst: from 18 to 27 s after burst onset, the >10 keV intensity shows a sharp drop, indicating a strong softening of the spectrum.

We generated time-resolved spectra for the burst, from event mode data that have a resolution of \(2^{-13} \) s, 64 energy channels, and no layer resolution. The time resolution of the spectra was chosen to vary over the burst, in order to keep the statistical quality of the spectra at an approximately constant level. The time resolution varied from 0.5 to 4.0 s. A background spectrum was determined from data preceding the burst from \(-40\) to \(-440\) s, and a correction was applied for the dead-time. The spectra were, between 3 and 20 keV, fitted with an absorbed single-temperature black body model with varying temperature and normalization. The absorption was modeled following Morrison & McCammon (1983), leaving free one value for the hydrogen column density \(N_H \) for all spectra. Furthermore, spectral channels were combined so that each spectral bin contained at least 15 photons, to ensure Gaussian fit is best, considerable improvement may also be achieved by allowing \(N_H \) to vary; \(\chi^2 \) reduces to 2.9 (21 d.o.f.) and \(N_H \) goes to \((4-5) \times 10^{22} \) cm\(^{-2}\). However, the inferred radius then becomes excessively large at \(1.7 \times 10^3 \) km at 9.5 kpc.

The fit results show a strongly varying blackbody radius, with a peak-to-peak variation of at least a factor of 40, that is anti-correlated with the temperature variation. During the first \(\approx 70 \) s this is accompanied by a fairly constant luminosity. This is a detection of photospheric radius expansion (PRE) due to near-Eddington luminosities. The radius increase beyond \(70 \) s goes with a decay in luminosity. This is often seen in PRE bursts and is assumed to be related to non-Planckian spectra (e.g., Kaptein et al. 2000; van Straaten et al. 2001). It is not thought to be related to true radius expansion. At the end of the burst, the radius decreases to a similar level as in the bursts that have been detected with the PCA when GRS 1747-312 was active (in’t Zand et al. 2003).

During the brief episode of strong softening, the expansion is strongest. Given the fact that this appears to be an isolated event, the suggestion is strong that in fact we are dealing with two different phases of radius expansion: the slow 70 s lasting
expansion with a factor of a few, and the fast 8 s lasting expansion with a factor of a few tens.

During the fast radius expansion, the temperature drops significantly below the low-energy threshold of the instrument and a significant fraction of blackbody radiation escapes detection. Consequently, measurements of the radius and bolometric flux become rather inaccurate, particularly if one would chose to leave free N_H (which was not done in the analysis shown in Fig. 3). The bolometric flux saturates during the first 70 s of the burst at a level of about 2.5×10^{-8} erg cm$^{-2}$ s$^{-1}$ (bolometric), disregarding the fast radius expansion phase during which bolometric corrections are too inaccurate.

We note that no burst oscillations were detected during this burst. The upper limit to the amplitude is 16% on a timescale of 4 s (combining the data from PCUs 0, 2 and 3; for details on the method, see in ‘t Zand et al. 2003).

The burst lasted at least ten times longer (320 ± 10 s to reach the background level) than the other four bursts that were detected from GRS 1747-312 with the PCA (durations between 10 and 32 s; in ‘t Zand et al. 2003). However, the peak flux is, within 20%, identical to the brightest PRE burst of the other four. This supports the association of the burst with GRS 1747-312, as does the fact that its longevity is expected for low accretion rates from hydrogen-rich donors (e.g., Fujimoto et al. 1981). GRS 1747-312 was not in outburst during the burst. The prior outburst was last detected above 1 mCrab 26 days earlier and the following outburst started 28 days afterwards (see Fig. 5). The accretion rate is suggested to have been a factor of at least 40 smaller than during the peak of the outbursts. Similar behavior was observed in other bursters as well, for instance SAX J1808.4-3658 (in ‘t Zand et al. 2001) and 2S 1711-339 (Cornelisse et al. 2002).

4. Discussion

The burst has a relatively strong photospheric radius expansion. Such bursts, with forty-fold or more expansion, are rather rare. We are aware of four other bursters that exhibit such strong radius expansion and, remarkably, three are located in globular clusters: 2S 1715-321 (Hoffman et al. 1978; Tawara et al. 1984), 4U 2129+11 in M 15 (van Paradijs et al. 1990; Smale 2001), 4U 1724-307 in Terzan 2 (Molkov et al. 2000) and 4U 1820-303 in NGC 6624 (Strohmayer & Brown 2002). The bursts from 4U 1724-307 occur much more frequently than in the other sources, about once every 4 days (Kuulkers et al. 2003). Additionally, one burst with a strong expansion was observed from an ill-determined position and identification with a particular source was impossible (Hoffman et al. 1978; Lewin et al. 1984). The expansions seen with the PCA in 4U 1724-307 and 4U 1820-303 were so strong that no radiation remained in the bandpass, not even the persistent emission otherwise present for these sources.

What sets the burst from GRS 1747-312 apart from the other aforementioned bursts is that the strong expansion phase did not occur at the start of the burst, but is delayed by 20 s. It lasted less than 10 s while (Eddington-limited) fluxes appear to
remained at the same level within 30% from 20 s before to 35 s after
the strong radius expansion. Thus, the suggestion is strong
that there must have been an extra radiation pulse for \(\approx 10 \) s
whose energy was immediately transformed to kinetic energy
of a quickly expanding photosphere. We propose that this extra
energy is due to a thermonuclear flash which occurred in a sep-
arate and deeper layer than the one where the long flash orig-
inated. The duration suggests that this separate layer consisted
of hydrogen-poor material. The layer may have formed either
through stable hydrogen burning during the previous outburst
or (invisible) unstable hydrogen burning after that (Fujimoto
et al. 1981). In the latter case, low-level accretion must have
been going on after the outburst.

What physical process or circumstance is responsible for
the unprecedented delay? A strong hint is provided by one
characteristic which sets GRS 1747-312 apart from the others:
GRS 1747-312 is in quiescence, while the other sources
are persistently bright. The difference in luminosity is at least
a factor of 10 (ranging from an upper limit of \(6 \times 10^{37} \) erg s\(^{-1}\)
for 4U 1820-303 (Molkov et al. 2000) and \(4 \times 10^{36} \) erg s\(^{-1}\)
for 4U 2129+11 (van Paradijs et al. 1990) to \(2 \times 10^{37} \) erg s\(^{-1}\)
for 4U 1820-303 (Strohmayer & Brown 2002)). The lower accretion rate in
GRS 1747-312 implies that the temperature in the upper neu-
tron star layers is lower. This may delay the ignition conditions
for the helium layer. Perhaps this is related to a relatively slow
onset of the second convection stage that is predicted to occur
in these types of X-ray bursts following the growth of \(3 \sigma \) reac-
tions in the accreted layer (Hanawa & Fujimoto 1986).

The results on GRS 1747-312 put the other bursts with
strong expansion phases into a new perspective. The strong
radius expansion phases that were detected in 4U 2129+11
(van Paradijs et al. 1990) and 4U 1724-307 (Molkov et al.
2000) are accompanied by a prolonged but smaller expansion
afterwards. Thus, there is the suggestion that also in these
bursts two separate layers may be ignited. This was perhaps not
recognized previously in the literature, because in those cases
the two layers ignited near-to simultaneously.

We note that long flashes (i.e., longer than 2 min) with-
out strong radius expansion have been observed in several low-
luminosity systems (e.g., Kaptain et al. 2000; in ‘t Zand et al.
2002). Perhaps in these systems the accretion rate never be-
comes high enough to induce stable hydrogen burning in the
upper layers. Thus, a pure helium layer is less likely to be
present in these systems, precluding the potential of a strong
radius expansion.

The burst from GRS 1747-312 is fundamentally different
from another peculiar burst from 4U 1636-536 which was ob-
served in August 1985 (van Paradijs et al. 1986). This 1-min
long burst was triple peaked with the third peak occurring 13 s
after the first peak and the peak fluxes of similar magnitude but
at least a factor of four below the Eddington limit. No pho-
tospheric radius expansion was detected. Van Paradijs et al.
speculate that this behavior is due to recurrent energy release
in quick succession at different locations on the surface of the
neutron star.

Another interesting detail about this burst is that it appar-
ently exhibited broad line emission. The nature of this fea-
ture is unclear; the centroid energy of 4.8 keV is not coinci-
dent with that of any known transition of an abundant element.
Also, it requires unexplainable redshifts from the Fe–K com-
plex, particularly since the photosphere radius is large when
this feature was present, and we are apprehensive to attribute
it to Fe–K emission although such emission was occasionally
seen in other bursts (e.g., in the superburst of 4U 1820-303, see
Strohmayer & Brown 2002). Interestingly, this is not the first
time that such a broad emission feature has been seen in a burst
at this energy. The analysis by van Paradijs et al. (1990) of the
burst from 4U 2129+11 in M15 showed severe expansion of
at least a factor of 80 and during the strongest phase of the ex-
pansion, a broad emission feature was apparent that extended
from 4 to 8 keV. They exclude explanations that involve a broad
emission line, reflection and Comptonization.

Acknowledgements. We thank Ed Brown and Walter Lewin for useful
discussions.

References
In ‘t Zand, J. J. M. 2001, In Proc. 4th INTEGRAL workshop
(Sept. 2000, Alicante, Spain), ed. A. Gimenez, V. Reglero, & C.
Winkler, 463