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Abstract. We present explicit expressions for the lens equation for a cored isothermal ellipsoidal gravitational lens as a single
real sixth-order algebraic equation in two approaches; 2-dimensional Cartesian coordinates and 3-dimensional polar ones. We
find a condition for physical solutions which correspond to at most five images. For a singular isothermal ellipsoid, the sixth-
order equation is reduced to fourth-order one for which analytic solutions are well-known. Furthermore, we derive analytic
criteria for determining the number of images for the singular lens, which give us simple expressions for the caustics and critical
curves. The present formulation offers a useful way for studying galaxy lenses frequently modeled as isothermal ellipsoids.
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1. Introduction

Gravitational lensing due to a galaxy is important for probing
mass distributions and determining cosmological parameters.
Galaxy lenses are often modeled as cored isothermal ellipsoids.
Although the ellipsoidal model is quite simple, it enables us
to understand a number of physical properties of the galactic
lens. Furthermore, it fits well with mass profiles implied by
observations (For instance, Binney & Tremaine 1987).

Until now, the lens equation for the cored isothermal ellip-
soid has been solved numerically as a nonlinearly coupled sys-
tem. For a binary gravitational lens, it has recently been shown
that the lens equation is reduced to a single real fifth-order
algebraic equation (Asada 2002). Also for a singular isother-
mal ellipsoidal lens, furthermore, the apparently coupled lens
equations can be reduced to a single equation (Schneider et al.
1992), though explicit expressions were not given there. Along
this course, we reexamine the coupled lens equations for the
cored isothermal ellipsoid. The main purpose of the present pa-
per is to show that they are reduced to a single equation with a
condition for physical solutions and to give analytic criteria for
determining the number of images for isothermal ellipsoidal
lenses.

2. Lens equation for a singular isothermal ellipsoid

First, let us consider the singular isothermal ellipsoidal lens
with ellipticity 0 < € < 1/5. A condition that the surface mass
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density projected onto the lens plane must be non-negative ev-
erywhere puts a constraint on the ellipticity as € < 1. A tighter
constraint € < 1/5 comes from that the density contours must
be convex, which is reasonable for an isolated relaxed system.
The lens equation is expressed as

(1- o6
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where 8 = (81,5,) and 8 = (6, 6;) denote the positions of the
source and images, respectively.
For simplicity, we introduce variables as x = V1 — €6,

y= Vli+ebhh,a= Vl—¢€B; and b = V1 + €B,, so that the

lens equation can be rewritten as
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2.1. Sources on the symmetry axes

There are two symmetry axes in the ellipsoid, a = 0 and b = 0.
We consider a source on the axis a = 0. In this case, we can
find analytic solutions for the lens equation as follows. We can
make a replacementas a & b, x @ yand 1 +e€ & 1 —€to
obtain solutions for b = 0.
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For a = 0, Eq. (3) becomes
1-¢€

] = ——

which means

] =0, (&)

x =0, (6)

or
1-¢€
2+ 2
In the case of x = 0, Eq. (4) becomes
Y
lyl’
which is solved as
{b—(1+e) forb<-(1+¢),
Y=

=1. (7N

b-y=—-1+e) (®)

bx(l+e for-(1+e)<b<1l+e, )
b+(1+e€ forl+e<b.

Here, we should pay attention to the cases of b = +(1 +¢), since
they produce a solution at the singularity (x,y) = (0, 0) of the
potential.

Next, we consider the case of Eq. (7). Let us investigate the
two cases, € = 0 and € # 0 separately. For € = 0, Eq. (4) means
b = 0, so that images become a ring as

=1 (10)

Below, we assume € # 0. Eliminating +/x? + y2 from Egs. (4)
and (7), we obtain

1-¢6)b
y= -t 2;)' (1)

Substituting this into y in Eq. (7), we obtain

1-¢\’
2 _ 232
x—(ze)(4e b?). (12)
which has real solutions if and only if |b] < 2e,
1—-
x=x— € Vae — 12, (13)
€

Consequently, Egs. (9) and (13) show that four, two or one
images occur for |b| < 2¢,2¢ < || < 1 +€eorl+¢€ < |b,
respectively.

In the similar manner, we obtain the solutions for b = 0. A
point is that 2€ < |a| < 1 — € can hold only for € < 1/3.

2.2. Off-axis sources
Here, we consider off-axis sources (a # 0 and b # 0). In this
case, Egs. (3) and (4) show x # 0 and y # 0. Eliminating
\/x2 + y? from Egs. (3) and (4), we obtain
(1-e€)bx
= 14
(1+e€)a-2ex a4

which determines y uniquely for any given x. For finite b,
Eq. (4) means that y is also finite, so that x # (1 + €)a/2¢
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from Eq. (14). Substituting Eq. (14) into Eq. (3), we obtain the
fourth-order polynomial for x as

D) = [(a-x? - (1 - €?][(1 + ea - 2ex]?

+(1 = €)’b*(a - x)*

=0, (15)

where we used x # 0.

The number of real roots for a fourth-order equation is dis-
cussed by the discriminant D, (e.g. van der Waerden 1966),
which becomes for Eq. (15)

Dy = —64a’b*eX(1 — €)'?

X [(a2 +b?—4e) + 108a2b262] . (16)
Namely, if
a2 b? 3 a2 b?
—+— -1 27| — || — 0, 17
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the number of real roots is either four or zero, which is de-
termined as four by explicit solutions for on-axis sources.
Otherwise, it is two. However, the number does not necessarily
indicate that of images as shown below.

Since x # 0 for off-axis sources, Eq. (3) is rewritten as

_ 1-¢€ (18)

X 2+ yz’
whose right-hand side is necessarily negative since 1 — € > 0.
As aresult, we find that any solution of the lens equation must
satisfy

a—X

< 0.

19)
X

This implies that x < 0 or a < x for positive a, while x < a or
0 < x for negative a. It should be noted that Eq. (19) always
holds in the limit of a — 0.

Let us investigate the number of roots in (@ — x)/x > O,
namely an interval between 0 and a. We find out

D(a) = —-a*(1-e)* <0, (20)
D) = (1 —52)2( A @1
1-€e? ((A+e)?

If a and b satisfy
2 2
a b 22)

- " avep 2t
D(0) is not negative, so that D(x) = 0 has at least one root be-
tween 0 and a. For € < 1/3, Eq. (22) implies a’/4e* + b /4e* >
1, so that the left-hand side of Eq. (17) becomes positive.
Hence, D, is negative, so that D(x) = 0 has two roots. As a
result, it has only one root in the interval, which means only
one image appears. Unless Eq. (22) holds, D(0) is negative, so
that the number of roots for D(x) = 0 for (a — x)/x < 0, namely
that of images are four or two, respectively for D4 > 0 or < 0.
The inner and outer caustics (Fig. 1) are given by

3 2 2
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a2 2
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Fig. 1. Caustics for a singular isothermal ellipsoidal lens in the phys-
ical coordinates (8,8,). For € = 0.15, the solid curve denotes the
inner caustic, and the dashed one for the outer caustic. Sources locate
at (0,0.1), (0,0.5) and (0, 1.3), denoted by the circle, filled disk and
square, respectively.

a? b?
+
1-e? (1+€)?

=1. (24)

The inner caustic given by Eq. (23) is an asteroid which is
parametrized as

a 2ecos’ t,

b

(25)

Desin’ ¢, (26)

where ¢ € [0, 27).

The critical curves on the lens plane correspond to the caus-
tics on the source plane (Schneider et al. 1992). We introduce
the polar coordinates as (x, y) = (pcosé, p sin&). By substitut-
ing Eqgs. (25) and (26) with ¢ = —¢ into the lens Egs. (3) and (4),
we obtain the parametric representation of the critical curve as
p =1+ €ecos2é. (27)

In the similar manner to the outer caustic given by Eq. (24), we
find
p=0, (28)

which is the origin in (x, y) (Fig. 2).

3. Lens equation for a cored isothermal ellipsoid

Let us consider a cored isothermal ellipsoidal lens with the an-
gular core radius c. The lens equation is expressed as

a = x[l _ L]’ (29)
VX2 + y? + 2
1
b = y(l_i]’ (30)
VX2 +y? + 2
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Fig. 2. Critical curves for a singular isothermal ellipsoidal lens in the

physical coordinates (6, 6,). For € = 0.15, the solid curve denotes the

outer critical curve which corresponds to the inner caustic. The origin

corresponds to the outer caustic. The images correspond to the sources
in Fig. 1.

-3 -2

which are apparently similar to the set of Eqs. (3) and (4).
However, there are differences in their algebraic properties as
shown below.

3.1. Sources on the symmetry axes

We consider a source on the axis a = 0. In this case, we can find
analytic solutions for the lens equation as follows. To consider
the case of b = 0, it is enough to make a replacement as a < b,
xeoyandl+eo 1 —€

For a = 0, Eq. (29) becomes

x[l—L]zO, 31)
which means
x=0, (32)
or

LI (33)

VX2 +y? + 2

In the case of x = 0, Eq. (30) becomes the fourth-order
polynomial for y as

E(y) = y* -2by° + [b* + ¢ — (1 + €)*1y* - 2bc*y + b*¢?
= 0.

(34)

Explicit solutions for a fourth-order equation take a lengthy
form (e.g. van der Waerden 1966). Now, Eq. (30) implies

b_
—y<0.
y

(35)
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Using

E0) = b*c* >0, (36)
E(b) = —b*(1 +€)* <0, (37)

we find that E(y) has at least one zero point between 0 and b. In
other words, E(y) = 0 has at most three roots for (b —y)/y < 0.

Next, we consider the case of Eq. (33). For € = 0, Eq. (30)
means b = 0, so that a ring image appears at

(38)

We assume € # 0 in the following. Eliminating /x% + y2 + ¢2

from Egs. (30) and (33), we obtain
1-¢e)b
y= - - )b (39)
€

Substituting this into y in Eq. (33), we obtain

x2+y2+c2=1.

1-€ 2

2 _ 2 12 2
x—(ze)(4e - b?) -, (40)
which has the real solutions

1—6\/ c \?

- 42[1—( )]—bZ, 41
= 2e € 1-¢€ “1)
if and only if

c \2
b2S462[1—( )] (42)
1-¢€

3.2. Off-axis sources
Here, we consider off-axis sources (a # 0 and b # 0). In this
case, Egs. (29) and (30) imply x # 0 and y # 0. Eliminating
Vx2 + y? + ¢% from Egs. (29) and (30), we obtain
(1 -¢e)bx
= 43
Y= 0¥ o0a-2ex (43)

Equation (30) shows that y is finite for finite b, so that x #
(1 + €)a/2e from Eq. (43). Substituting Eq. (43) into Eq. (29),
we obtain the sixth-order polynomial for x as

F(x) = (a-x)?

><[(x2 + c2) [(1+e)a—2ex]* + (1 — €)*h*x>

—(1 - €*xX*[(1 + €)a — 2ex]?

= 0. 44)

This equation has at most six real solutions whose ana-
lytic expressions can not be given by algebraic manners (e.g.
van der Waerden 1966). As shown below, however, six real
roots never mean six images.

In the same manner as for the singular isothermal ellipsoid,
we obtain a condition for x as
a—x

<0. (45)
X

Let us prove that there exists a root between 0 and a. We can
find out

F(0) = a*c*(1+ e >0,
F(a) = —a*(1 -e)* <0.

(46)
(47)
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Since F(x) is a continuous function, F(x) = 0 has at least one
root in the interval. For (a — x)/x < 0, consequently, F'(x) = 0
has at most five solutions. Since the polynomial is sixth-order,
the discriminant is not sufficient to determine the exact number
of roots. Hence, the determination is beyond the scope of our

paper.

3.3. Polar coordinates

Up to this point, we have used 2-dimensional Cartesian coordi-
nates: We must solve Eq. (44) and choose appropriate roots
which satisfy the inequality by Eq. (45). Here, we adopt 3-
dimensional polar coordinates to simplify the inequality, as
shown below. By taking ¢ as a fictitious third dimension, we
define

o frprase )

cos¥ = <, (49)
r

x = rsin¥ cos ¢, (50)

y = rsin ¥ sin ¢, (51)

where we can assume sin'¥' > 0. Then, Eqs. (29) and (30) are
rewritten as

1 —

a= r(l - e)sin‘I’cosq), (52)
r

1+¢€)\ . .
b= r(l - )sm‘I’sm¢. (53)
We concentrate on off-axis sources (a # 0 and b # 0).

Eliminating sin ¥ from Eqs. (52) and (53), we obtain
blr—(1-¢)]

t = 54
M= =+ ol (54

which determines tan ¢ uniquely for any given r. Equations
(52) and (53) show that r # 1 + € for nonvanishing a and b,
since x # 0 and y # 0 mean cos¢ # 0 and sin¢ # 0. Hence,
Egs. (52) and (53) can be rewritten as

ar
Tr—(-e )
br
V=i Tdre 60

Substituting these into 72 = x* + y> + ¢, we obtain the sixth-
order equation for r as

G = (P -A)lr-0-ellr-1+eP
—a’Plr- 1+ e -bvrr-1+e)

=0, (57)

which has at most six real solutions. Let us show that there
are at most five roots compatible with r > c¢. Using G(c) =
—a*Ale—(1+€)P-b*c?c—(1-€)]* < 0 and G(—0) = +00 > 0
for a continuous function G(r), we find that G(r) = 0 has at
least one root for r < c¢. Consequently, it has at most five roots
forr > c.
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We should note that » and tan ¢ are not enough to determine
the location of images. A strategy for determining the location
is as follows: First, we solve Eq. (57) for r > ¢. Next, we sub-
stitute r into Egs. (55) and (56) to obtain the image position as

x, y).

4. Conclusion

We have carefully reexamined the lens equation for a cored
isothermal ellipsoid both in 2-dimensional Cartesian and 3-
dimensional polar coordinates. We have shown that the nonlin-
early coupled equations are reduced to a single real sixth-order
polynomial Eq. (44) or (57), which coincides with the fourth-
order equation for a singular isothermal ellipsoid as the core
radius approaches zero. For the singular case, explicit expres-
sions of image positions for sources on the symmetry axis are
given by Egs. (6), (9), (11) and (13). Furthermore, we have pre-
sented analytic criteria for determining the number of images,
which correspond to the caustics given by Eqgs. (23) and (24).
Consequently, analytic expressions for the critical curves are
given by Eqs. (27) and (28). We have shown for the cored case
that a condition Eq. (45) or (48) gives us physical solutions of
the sixth-order polynomial, which are at most five images.

The present formulation based on the one-dimensional
Eq. (44) or (57) enables us to study a cored isothermal ellip-
soidal lens with considerable efficiency and accuracy, in com-
parison with previous two-dimensional treatments for which
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there are no well-established numerical methods (Press et al.
1988). Particularly for a source close to the caustics, the image
position is unstable so that careful computations are needed.
The amount of computations can be reduced by our approach.
As a result, it must be powerful in rapid and accurate parameter
fittings to observational data.
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