
A&A 379, 1083–1097 (2001)
DOI: 10.1051/0004-6361:20011351
c© ESO 2001

Astronomy
&

Astrophysics

Fast MHD oscillations in prominence fine structures

A. J. D́ıaz1, R. Oliver1, R. Erdélyi2, and J. L. Ballester1
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Abstract. High-resolution observations suggest that quiescent solar prominences are made of small-scale fibrils
stacked one after another in both the vertical and horizontal directions. These fibrils are interpreted as the cool,
highermost part of much larger coronal loops which are rooted in the solar photosphere. On the other hand,
there is some evidence showing that small amplitude oscillations in prominences can affect individual or groups of
fibrils, which vibrate with their own periods. Using a simple magnetostatic model to represent the fibril structure
of quiescent solar prominences, Joarder et al. (1997) investigated some oscillatory properties of the Alfvén and
fast magnetohydrodynamic modes. In this paper, with a proper treatment of boundary conditions, we reexamine
their configuration and explore more deeply the basic features (mainly frequency and spatial structure) of the
fast mode. The main conclusion is that, for reasonable values of the fibril’s width, perturbations extend far away
from its axis and, therefore, a single oscillating fibril can excite oscillations in neighbouring ones.
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1. Introduction

Solar quiescent prominences are cool and dense objects
which last for a long time and are embedded in the hot and
rarefied solar corona. Many theoretical models have been
put forward to explain the formation, support and disap-
pearance of these intriguing objects, although no consen-
sus about these issues has been reached yet (Webb et al.
1993). While some theoretical models consider promi-
nences as an infinite slab of plasma having a small thick-
ness, many observations of quiescent prominences show
very fine structures in the body of the filament, suggest-
ing that they are composed of small-scale threads. The
existence of this internal structure in prominences was al-
ready suggested by Menzel & Evans (1953) and was clar-
ified with the improvement of observational capabilities
(Engvold 1976; Engvold et al. 1987). Although vertical
filamentary structures can be seen in limb prominences
(Dunn 1960), there is also evidence for the existence of
horizontal fine structures within prominences (Schmieder
& Mein 1989; Schmieder et al. 1991). For instance, Simon
et al. (1986) studied the velocities in quiescent filaments
in Hα and C iv. From the Hα observations they concluded
that the filament is composed of many small-scale loops
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anchored at many different footpoints that are not aligned
along the filament axis. The observed vertical velocities
and their changes due to perspective strongly suggest ma-
terial falling down to the observed cool prominence, but
whether this is material from the corona or over the top of
a loop could not be distinguished. Demoulin et al. (1987)
deduced statistical sizes of 103 km and 104 km for the
thickness and length of the threads which form a filament.
Engvold et al. (1987) studied a quiescent prominence seen
in projection against the disk and, from the study of the
prominence-corona interface, they deduced that the fine
structure of the cool core of the prominence may consist
of thin magnetic flux ropes oriented at an angle of 20◦ with
the prominence long axis. Taking into account the obser-
vational evidence that solar prominences can be composed
of small-scale loops, magnetostatic equilibrium models for
prominence fibrils have been constructed by Ballester &
Priest (1989), Degenhardt & Deinzer (1993) and Schmitt
& Degenhardt (1996). These models represent a promi-
nence fibril by means of a hot-cool loop modeled using
the thin flux tube approximation. A different approach
was used by Hood et al. (1992), Steele & Priest (1992)
and Steele (1996), who modeled prominences as a verti-
cal set of cold fibrils in the hotter corona, with ad hoc
temperature profiles.
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From the observational point of view, the existence
of small amplitude, periodic velocity oscillations in quies-
cent solar prominences is a well-known phenomenon and
many theoretical investigations have been undertaken to
explain them. Periods of oscillation are classified as short
(T < 10 min), intermediate (10 min < T < 40 min)
and long (T > 40 min) although this classification does
not appear to reflect the origin of the prominence exciter
(see Engvold 2001; Oliver & Ballester 2001 for a thor-
ough review about prominence oscillations). In addition,
it appears to be well established that small amplitude,
periodic changes in solar prominences are of local na-
ture, affecting only restricted prominence areas (Tsubaki
& Takeuchi 1986; Tsubaki et al. 1987; Balthasar et al.
1988a; Balthasar et al. 1988b; Balthasar et al. 1993;
Thompson & Schmieder 1991; Balthasar & Wiehr 1994).
Two-dimensional, high-resolution observations (Yi et al.
1991; Yi & Engvold 1991) have even revealed that individ-
ual fibrils or groups of fibrils may oscillate independently
with their own periods, which range between 3 and 20 min.
Hence, one of the basic questions in prominence seismol-
ogy that remains unanswered nowadays is whether peri-
odic changes in prominences are always associated with
their fibril structure or not.

The first theoretical investigation of periodic promi-
nence perturbations taking into account the prominence
fine structure was performed by Joarder et al. (1997), here-
after JNR97. In essence, the equilibrium is similar to that
in Joarder & Roberts (1992) with the difference that the
plasma slab has a limited height, so the configuration is
reminiscent of a thin thread with finite width and length.
Nevertheless, the fibril is infinitely deep since the equilib-
rium configuration is invariant in the y-direction. To fur-
ther simplify the problem, the influence of plasma pressure
was neglected (zero-β limit) and consequently the slow
mode was absent. Thus, one is left with the Alfvén and
fast modes in a plasma threaded by a transverse magnetic
field. However, JNR97 did not properly incorporate the
boundary conditions for the physical variables at one of
the equilibrium interfaces and so their results for the fast
mode are not completely correct. Moreover, these authors
restricted their study to the oscillatory frequencies and
did not take into account other properties that are also
relevant.

A more suitable equilibrium model based on promi-
nence fibrils was used by Rempel et al. (1999). It is built
on the thin flux tube approximation in conjunction with
the balance between heat conduction, radiative losses and
heating. Nevertheless, the aim of this study was to in-
vestigate the stability properties of such prominence con-
figuration under fast and slow mode perturbations and,
consequently, the properties of stable modes were not an-
alyzed in depth.

Our main goal in this paper is to properly solve, us-
ing both analytical and numerical tools, the problem of
fast magnetohydrodynamic (MHD) oscillations of the fib-
ril equilibrium configuration used by JNR97. To this end,
our paper is organized as follows: In Sect. 2 the equilibrium

model, the basic assumptions and the wave equations to
be solved are described; Sect. 3 is devoted to describing
the analytical solution of the fast magnetoacoustic wave
equation, while Sect. 4 deals with the numerical solution;
finally, in Sect. 5 we compare and discuss the analytical
and numerical solutions and in Sect. 6 our conclusions are
presented.

2. Basic equations

2.1. Equilibrium model

Following JNR97, we consider a single prominence fibril
surrounded by the coronal medium (Fig. 1). This config-
uration consists of a straight flux tube of total length 2L
made of a cold and dense part (the prominence fibril it-
self) with length 2W and density ρp and a hotter, coronal
gas with density ρe occupying the reminder of the thin
loop. This structure, whose thickness is 2b, is embedded
in the coronal environment, with density ρc. The loop is
anchored in the photosphere, so its footpoints are subject
to line-tying conditions. Finally, the plasma is permeated
by a uniform magnetic field directed along the prominence
fibril. Because gravity is neglected, all other physical vari-
ables (ρ, T and p) are also uniform in each of the three
regions. In fact, in the present Cartesian configuration one
cannot properly speak about a flux tube or a loop since
the system is unlimited in the y-direction and so it is bet-
ter described as a slab. Nevertheless, both terms will be
used in the rest of the paper.

The parameter values used in this paper are similar
to those considered by JNR97, where references to some
relevant observational papers can be found. The thick-
ness of prominence fibrils is 2b ' 200–400 km and their
length is 2W ' 20 000 km. The total length of magnetic
field lines can be estimated as 2L ' 60 000–200 000 km,
so that b/L ' 0.001–0.007 and W/L ' 0.1–0.3. In addi-
tion, JNR97 use ρe/ρc = 0.6 and ρp/ρc = 200, so that
the prominence material is 200 times more dense than the
coronal one and the hot gas in the evacuated part of the
loop is about half as dense as the coronal plasma. In our
calculations we have also taken ρc ' ρe and ρp ' 1000 ρc,
which corresponds to a still denser prominence compared
to its surroundings (cf. Hvar Reference Atmosphere of
Quiescent Prominences, Engvold et al. 1989).

2.2. Linear perturbation equations

Following JNR97, the equations governing the oscillatory
modes are the linearized, ideal MHD equations for a zero-
β plasma, where the subscript “0” denotes an equilibrium
quantity,

∂ρ

∂t
+ ρ0∇ · v = 0, (1)

ρ0
∂v

∂t
=

1
µ

(∇×B)×B0, (2)
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Fig. 1. Sketch of the equilibrium configuration used in this study. The grey zone represents the cold part of the loop, modeling
the prominence fibril. The density in the fibril, ρp, in the evacuated (coronal) part of the loop, ρe, and in the coronal environment,
ρc, are all uniform. Moreover, the magnetic field is uniform and parallel to the z-axis and the whole configuration is invariant
in the y-direction (After JNR97).

∂B

∂t
= ∇× (v ×B0), (3)

∇ ·B = 0. (4)

The consequence of assuming zero plasma β is that the
slow mode cannot propagate in this system and so, using
the third component of the momentum equation, it turns
out that vz = 0. The other two components of Eq. (2)
take the form

ρ0
∂vx
∂t

=
B0

µ

(
∂bx
∂z
− ∂bz
∂x

)
, (5)

ρ0
∂vy
∂t

=
B0

µ

∂by
∂z

, (6)

where b = (bx, by, bz) is the perturbed magnetic field.
Now, we write the components of the induction equation,

∂bx
∂t

= B0
∂vx
∂z

,
∂by
∂t

= B0
∂vy
∂z

,
∂bz
∂t

= −B0
∂vx
∂x

, (7)

and next Fourier analyze all perturbed variables in time
(i.e., each variable â(r, t) is assumed to be of the form
â(r, t) = eiωt a(r), so ∂/∂t = iω). Finally, after some
simple algebra, we obtain the following partial differen-
tial equations for the velocity components vx and vy,

∂2vx
∂x2

+
∂2vx
∂z2

+
ω2

v2
A

vx = 0, (8)

∂2vy
∂z2

+
ω2

v2
A

vy = 0, (9)

with vA the Alfvén speed. Equations (8) and (9) are
two decoupled partial differential equations that gov-
ern the propagation of fast magnetoacoustic waves and

Alfvén waves, respectively. The spectrum and properties
of Alfvén modes have already been discussed in JNR97,
so we here concentrate on the investigation of fast modes.

3. Analytical solution

3.1. General method

We consider Eq. (8) and distinguish between two different
zones: the flux tube (hereafter labelled “l”) and the coro-
nal environment (labelled “c”), with two different Alfvén
speeds:

vA =
{
vAc(z), |x| > b,
vAl(z), |x| < b.

(10)

The line-tying condition results in the boundary
conditions

vx = 0 at z = ±L. (11)

Consider an ordinary differential operator L, determined
in the interval [−L,L] by the differential expression

d2

dz2
+

ω2

v2
Aj(z)

(12)

and the boundary conditions Eq. (11), where j = c, l, and
c stands for external quantities and l for internal ones. It
is straightforward to see that this operator is selfadjoint.
According to the theory of selfadjoint ordinary regular dif-
ferential operators, the eigenvalues of this operator consti-
tute a monotonically decreasing countable set tending to
−∞. We write the nth eigenvalue as −(λ(j)

n )2, where ei-
ther λ(j)

n > 0 , or λ(j)
n is a purely imaginary number with
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positive imaginary part, and λ
(j)
n → ∞ as n → ∞. The

corresponding eigenfunction h
(j)
n (z) satisfies the equation

d2h
(j)
n

dz2
+

ω2

v2
Aj(z)

h(j)
n = −(λ(j)

n )2h(j)
n . (13)

The set of eigenfunctions {h(j)
n (z)} constitute a complete

system of functions (a basis) in [−L,L], so that any well-
behaved function f(z) can be expanded into a generalized
Fourier series

f(z) =
∞∑
n=1

f (j)
n h(j)

n (z),

f (j)
n =

〈
f, h(j)

n

〉
≡
∫ L

−L
f(z)h(j)

n (z) dz, (14)

where 〈f, g〉 indicates the scalar product of the functions
f and g, and we have assumed that the basis {h(j)

n (z)}
is orthonormal, i.e. ‖h(j)

n ‖2 ≡ 〈h(j)
n , h

(j)
n 〉 = 1. Note that,

by virtue of Eq. (13), the eigenvalues and eigenfunctions
depend on ω.

Let us first find the solutions in the coronal region
(|x| > b). We expand vx in series

v(c)
x (x, z) =

∞∑
n=1

u(c)
n (x)h(c)

n (z), (15)

substitute this expansion into Eq. (8) and use Eq. (13).
As a result we have an infinite set of equations for the
coefficient-functions u(c)

n (x),

d2u
(c)
n

dx2
− (λ(c)

n )2u(c)
n = 0. (16)

The solutions to these equations, satisfying the condition
u

(c)
n → 0 as |x| → ∞, are

u(c)
n =

 A
(−)
n exp[λ(c)

n (x+ b)], x < −b,

A
(+)
n exp[−λ(c)

n (x− b)], x > b.
(17)

In what follows we consider only ω such that (λ(c)
1 )2 > 0,

because otherwise the solution in the region |x| > b does
not tend to zero as |x| → ∞. Since {(λ(c)

n )2} is a mono-
tonically increasing set, (λ(c)

n )2 > 0 for any n. Hence, the
solution in the coronal part is

v(c)
x =



∞∑
n=1

A(−)
n exp

[
λ(c)
n (x+ b)

]
h(c)
n (z), x < −b,

∞∑
n=1

A(+)
n exp

[
−λ(c)

n (x− b)
]
h(c)
n (z), x > b.

(18)

Now we find the solution inside the tube (|x| < b). We
expand vx in series

v(l)
x (x, z) =

∞∑
n=1

u(l)
n (x)h(l)

n (z), (19)

substitute this expansion into Eq. (8) and use Eq. (13).
As a result we have an infinite set of equations for the
coefficient-functions u(l)

n (x),

d2u
(l)
n

dx2
− (λ(l)

n )2u(l)
n = 0. (20)

The solutions to these equations are

u(l)
n (x) = Bcos

n cosh
(
λ(l)
n x
)

+Bsin
n sinh

(
λ(l)
n x
)
. (21)

Hence, the solution in the region |x| < b is

v(l)
x =

∞∑
n=1

[
Bcos
n cosh

(
λ(l)
n x
)

+Bsin
n sinh

(
λ(l)
n x
)]
h(l)
n (z). (22)

At the boundaries |x| = b, the normal component of the
perturbed velocity and the magnetic field and the total
magnetic pressure have to be continuous. In other words,
our boundary conditions on those surfaces are

n · [v] = 0, n · [B] = 0,
[
p+

B2

2µ

]
= 0, (23)

where brackets represent [A] ≡ A2 − A1, the subscripts 1
and 2 indicating the values of the variable A on either side
of the boundary.

The assumption of cold plasma leads to neglect the
plasma pressure in front of the magnetic pressure, so the
last condition of Eq. (23) follows from the second one.
The conclusion from the development of Eqs. (1)–(4) and
from Eq. (7) is that the second condition leads to conti-
nuity of ∂vx/∂x. Therefore, the conditions at |x| = b are

v(c)
x = v(l)

x ,
∂v

(c)
x

∂x
=
∂v

(l)
x

∂x
· (24)

Now, following Eq. (14), the functions h(l)
n (z) can be ex-

panded into a “generalized Fourier series” in terms of the
functions h(c)

n (z),

h(l)
n (z) =

∞∑
m=1

Hnmh
(c)
m (z). (25)

The coefficients Hnm will play an important role in the
following discussion. Using the completeness of our ba-
sis of eigenfunctions, the following expression for Hnm is
obtained,

Hnm =
∫ L

−L
h(l)
n (z)h(c)

m (z). (26)

After some algebraic manipulations (see Appendix A), the
following expressions are obtained,
∞∑
m=1

HmnB
sin
m

[
λ(c)
n sinh

(
λ(l)
m b
)

+λ(l)
m cosh

(
λ(l)
m b
)]

=0 (27)

for sausage modes, and
∞∑
m=1

HmnB
cos
m

[
λ(c)
n cosh

(
λ(l)
m b
)

+λ(l)
m sinh

(
λ(l)
m b
)]

=0 (28)
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for kink modes. By using this notation we are assuming
the common terminology by which kink modes stand for
even solutions in the direction across the fibril and sausage
modes for the odd ones. These two kind of modes become
separated because of the symmetry of the problem.

Equations (27) and (28) constitute two infinite sys-
tems of homogeneous algebraic equations for Bsin

m and
Bcos
m , respectively, with coefficients that depend on ω. For

these systems to have non-trivial solutions, only particu-
lar values of ω are acceptable: the eigenfrequencies of the
problem under consideration. Hence, the determinant of
Eqs. (27) or (28) must be zero, which provides us with the
dispersion relation from which ω can be computed. Since
it is not possible to solve these infinite determinants, they
are truncated by taking Brn = 0 (r = sin, cos) for n > N .
Then, we obtain a generalized eigenvalue problem, with
N a sufficiently large integer number for a finite matrix,
and the eigenfrequencies can be determined from the con-
dition that the determinant of the N ×N matrix is zero,
which results in a transcendental equation for ω.

After solving the dispersion relation to calculate the
eigenfrequency ω, all other quantities can be calculated
straightforward, except for the coefficients Br

n. These
ones must be obtained from the systems of equations in
Eqs. (27) and (28), using the fact that for the eigenfre-
quencies the equations in these systems are not linearly
independent, so all the coefficients Brn can be expressed in
terms of Br1 , which can be set to 1. Finally, the perturbed
velocity can be obtained from Eqs. (15) and (19). The
process of computing vx is therefore quite cumbersome.

3.2. Application to fibril structure model

After having developed the previous theoretical frame we
can turn to our model again. First of all, the Alfvén speed
is vAc outside the fibril, whereas inside is defined as

vAl(z) =
{
vAp, |z| < W,
vAe, W < |z| < L,

(29)

where vAc, vAp and vAe are constant, and vAp < vAe. It is
straightforward to find that

h
(c)
2n−1(z) =

1
L1/2

cos
π(2n− 1)z

2L
, (30)

h
(c)
2n (z) =

1
L1/2

sin
πnz

L
,

(λ(c)
2n−1)2 =

π2(2n− 1)2

4L2
− ω2

v2
Ac

, (31)

(λ(c)
2n )2 =

π2n2

L2
− ω2

v2
Ac

,

where n = 1, 2, . . . The following quantities are also
defined,

κod
c =

π(2n− 1)
2L

, κev
c =

πn

L
· (32)

According to the evanescent wave condition (λ(c)
1 )2 > 0,

ω < πvAc/(2L) (for even modes). This condition has been

derived under the assumption that u(c)
1 6= 0, since no solu-

tions can be found when this basis function is not included
in the sum shown in Eq. (15). Furthermore, there are no
solutions which show a decay in the x-direction for values
of ω bigger than that one. We will comment on this point
later.

Since one of the coefficients of the equation for h(l)
n (z)

is discontinuous, the second derivative of h(l)
n (z) is discon-

tinuous, while its first derivative and the function itself are
continuous. However, at the boundaries z = ±W there is
a different situation: the dot product of the equilibrium
magnetic field and the normal is not zero, so the bound-
ary conditions are more restrictive than Eqs. (23) (see
Schmidt 1979; Goedbloed 1983),

[v] = 0, [B] = 0, [p] = 0. (33)

These conditions imply the continuity of the functions h(l)
n

and their derivatives at this boundary.
The solution to Eq. (13), satisfying the condition

h
(l)
n (±L) = 0 is

h(l)
n (z) =


C− sin[κe(z + L)], −L < z < −W,
Dcos cos(κpz)

+Dsin sin(κpz), −W < z < W,

C+ sin[κe(z − L)], W < z < L,

(34)

where

κ2
p =

(
λ(l)
)2

+
ω2

v2
Ap

, κ2
e =

(
λ(l)
)2

+
ω2

v2
Ae

· (35)

In these equations and in the following, the subscript n in
the quantities κp, κe, κc, C−, C+, Dcos, Dsin and Λev,Λod

(see below) has been dropped to simplify the notation.
At this point, the spatial dependence of vx inside and

outside the fibril is well characterized and so it is pos-
sible to discuss the differences between our solution and
that in JNR97. Equations (18) and (22), with Eqs. (30)
and (34) for h(c)

n (z) and h
(l)
n (z), tell us that vx is an infi-

nite sum of basis functions with different wavelengths in
the z-direction inside and outside the fibril. Because of
the complex nature of this solution, imposing the bound-
ary conditions (24) at the frontier between the two re-
gions yields a dispersion relation which is the determi-
nant of an infinite system of algebraic equations (Eqs. (27)
and (28)). The situation looks much simpler in JNR97,
whose Eqs. (16), (19) and (20) provide vx inside and out-
side the loop using only one basis function in each region.
The problem with JNR97’s solution is that it cannot sat-
isfy the boundary conditions at |x| = b since the wave-
length of outside and inside the loop are different along
this boundary. For this reason, their condition (24) makes
no sense.

In the parameter range of interest κ2
p > 0 holds, while

the sign of κ2
e can be arbitrary. Now it will be assumed

that κe is either positive or purely imaginary with posi-
tive imaginary part. Nevertheless, in our model at least
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the fundamental basis function has κe < 0 (and depend-
ing on the choice of parameters, this can be true for
other harmonics too), so Eq. (34) should be written in
terms of hyperbolic functions for this basis function (see
Appendix B).

The continuity conditions at z = ±W lead to

C− sin[κe(L−W )] = Dcos cos(κpW )
−Dsin sin(κpW ), (36)

κeC− cos[κe(L−W )] = κp[Dcos sin(κpW )
+Dsin cos(κpW )], (37)

−C+ sin[κe(L−W )] = Dcos cos(κpW )
+Dsin sin(κpW ), (38)

κeC+ cos[κe(L−W )] = κp[−Dcos sin(κpW )
+Dsin cos(κpW )]. (39)

These expressions constitute a system of linear homoge-
neous equations with respect to C−, C+, Dcos and Dsin,
and has a non-trivial solution only if its determinant is
zero, which gives

κ2
p sin2[κe(L−W )] sin(2κpW )
−κpκe sin[2κe(L−W )] cos(2κpW )] (40)
−κ2

e cos2[κe(L−W )] sin(2κpW ) = 0.

There are two ways the previous equality can be satisfied,

κp tan(κpW ) = κe cot[κe(L−W )] (41)

or

κp cot(κpW ) = −κe cot[κe(L−W )], (42)

which are just Eqs. (22) and (23) in JNR97. It is straight-
forward to show that Eq. (42) corresponds to solutions
to the system of Eqs. (36)–(39) with Dsin = 0 and
C+ = −C−, i.e. to even solutions, while Eq. (41) to solu-
tions to the same system with Dcos = 0 and C+ = C−,
i.e. to odd solutions. According to the general theory of
Sturm-Liouville problems, Eq. (41), considered as an equa-
tion for (λ(l))2, has an infinite set of solutions {(λ(l)

2n−1)2}
such that (λ(l)

2n−1)2 → ∞ as n → ∞. Equation (42), con-
sidered as an equation for (λ(l))2, also has an infinite set
of solutions {(λ(l)

2n)2} such that (λ(l)
2n)2 →∞ as n→∞. In

addition, (λ(l)
2n−1)2 < (λ(l)

2n)2 < (λ(l)
2n+1)2 for n = 1, 2, . . .

Notice that in both cases the eigenvalues λ(l)
n depend on ω.

The even eigenfunctions are given by

h
(l)
2n−1(z) =

Λev

 cos(κpW ) sin[κe(L+ z)], −L < z < −W,
sin[κe(L−W )] cos(κpz), −W < z < W,
cos(κpW ) sin[κe(L− z)], W < z < L,

(43)

and the odd ones by

h
(l)
2n(z) =

Λod

 − sin(κpW ) sin[κe(L+ z)], −L < z < −W,
sin[κe(L−W )] sin(κpz), −W < z < W,
sin(κpW ) sin[κe(L− z)], W < z < L.

(44)

The coefficients Λev and Λod are determined by the nor-
malization condition ‖h(l)

2n−1‖ = ‖h(l)
2n‖ = 1, i.e.∫ L

−L
[h(l)

2n−1(z)]2 dz =
∫ L

−L
[h(l)

2n(z)]2 dz = 1.

We can evaluate these coefficients by using Eqs. (43)
and (44) to obtain the expressions

Λ−2
ev = (L−W ) cos2(κpW ) +W sin2[κe(L−W )]

− 1
2κe

cos2(κpW ) sin[2κe(L−W )]

+
1

2κp
sin2[κe(L−W )] sin(2κpW ), (45)

Λ−2
od = (L−W ) sin2(κpW ) +W sin2[κe(L−W )]

− 1
2κe

sin2[κpW ] sin[2κe(L−W )]

− 1
2κp

sin2[κe(L−W )] sin(2κpW ). (46)

The next step is to express the inner basis of functions in
terms of the outer one. To achieve this we need to calcu-
late the “Fourier coefficient” from Eq. (26). It is straight-
forward to check that even and odd parities are never
mixed, i.e.

H2n,2m−1 = 0; m,n ∈ N .

The other coefficients are given by

H2n,2m = ΛodL
− 1

2

{
sin[κe(L−W )]

×
(

sin[(κp − κod
c )W ]

κp − κod
c

− sin[(κp + κod
c )W ]

κp + κod
c

)
+ sin[κpW ]

(
sin[κe(L−W )− κod

c W ]
κe + κod

c

− sin[κe(L−W ) + κod
c W ]

κe − κod
c

)}
, (47)

H2n−1,2m−1 = ΛevL
− 1

2

{
sin[κe(L−W )]

×
(

sin[(κp − κev
c )W ]

κp − κev
c

+
sin[(κp + κev

c )W ]
κp + κev

c

)
+ cos[κpW ]

(
−cos[κe(L−W )− κev

c W ]
κe + κev

c

− cos[κe(L−W ) + κcW ]
κe − κev

c

)}
, (48)

where the κ’s are the ones defined by Eqs. (32) and (35),
with the appropriate values of λ(j)

n .
Now we have all the quantities that are needed in

Eqs. (27) and (28). Notice that these two systems of equa-
tions are actually four once the even/odd symmetry in the
z-direction is taken into account.



A. J. D́ıaz et al.: Fast MHD oscillations in prominence fine structures 1089

4. Numerical solution

Apart from the analytical method described in the previ-
ous section, a numerical approach has also been used to
solve Eq. (8). There are a few reasons for using numerical
techniques: first, if the cold plasma assumption is removed
(such as must be done to better describe the real condi-
tions in quiescent prominences), the mathematical prob-
lem changes to two coupled partial differential equations
which are hard to solve analytically; second, the analytical
solution involves large computational efforts when realistic
(i.e. small) values of the fibril half-thickness, b, are con-
sidered. The advantage of having an analytical formalism
to obtain fast mode frequencies is that the goodness of
numerical values can be checked.

For these reasons, the numerical code described in
Oliver et al. (1996) has been used. This program gives,
among other information, the frequency and spatial struc-
ture of the fast and slow magnetoacoustic modes of any
two-dimensional, y-invariant equilibrium with By = 0.
Since we are concerned with solving Eq. (8), obtained un-
der the β = 0 assumption, it is necessary to set the sound
speed to zero to eliminate the slow mode.

Nevertheless, before applying the numerical code to
the present problem it had to be modified so that the thin
fibril and the much wider coronal environment can be ad-
equately represented by a computational mesh with non-
uniform spacing (see Appendix C for details). Previous
versions of the code are not suitable for this task since
they make use of a grid with two different but constant
spacings in the x- and z-directions. Hence, to obtain a
fine spatial representation of the velocity inside the fibril
it would have been necessary to use an excessively small
grid spacing, with the associated enormous computational
cost.

Our use of the non-uniform grid consists essentially of
taking a uniform mesh (although with different spacing in
the x- and z-directions) covering the whole prominence
fibril. The fibril is then surrounded by a coarser mesh
which is in turn embedded in one or more even coarser
grids that span the rest of the system. Therefore, the fi-
nite difference formulas for the derivatives of the velocity
components are second order accurate in each of the re-
gions (see Appendix C), but are only first order accurate
at the interfaces between regions. Since the number of
points in these interfaces is much smaller than the total
number of points used, almost second order accuracy of
eigensolutions is ensured.

Finally, we turn to the boundary conditions that must
be imposed on vx. Such as we mentioned before, this veloc-
ity component must vanish at z = ±L because of photo-
spheric line-tying. On the other hand, vx must also vanish
as |x| → ∞ and it is expected that solutions will decay
exponentially in the x-direction. Hence, we place two hor-
izontal boundaries sufficiently far from the thin loop (at
x = ±H, say) and impose vx = 0 there. If these bound-
aries have been put far enough from the loop, the fre-
quency and spatial structure of vx remain unaltered when

H is increased. It turns out that it is necessary to set H
some orders of magnitude larger than the thickness of the
fibril in order to correctly reproduce the exponential decay
in the x-direction (e.g. Fig. 6c).

5. Results

First of all, we mention the parameter values used in our
calculations. Following JNR97, we set W/L = 0.1 for a fib-
ril whose length is one tenth the total length of the thin
loop (including both the cool and the evacuated parts).
In addition, the following density ratios are considered,
ρe/ρc = 0.6 and ρp/ρc = 200. These variables are useful
because the equilibrium magnetic field is uniform and so
the Alfvén speed in the hot and cool parts of the loop can
be cast as v2

Ae = ρc
ρe
v2

Ac and v2
Ap = ρc

ρp
v2

Ac. Now, all quan-
tities can be non-dimensionalized against L and vAc, and
Eq. (8) can be solved by analytical or numerical means.
There is still a free parameter, namely b/L, whose value
must be specified before these equations can be solved
to find the eigenfrequencies and spatial properties of the
modes.

Finally, it is worth commenting on the number of ba-
sis functions, N , to be used when Eqs. (27) or (28) are
truncated. Tests have been done by using 8 and 10 basis
functions and the difference in the frequency is of the or-
der 0.01%. Consequently, frequencies have been computed
using 8 basis functions (that is, only values up to m = 8
have been retained in Eqs. (27) and (28)). Regarding the
eigenfunction, vx, it is not well reproduced with such a
small number of basis functions for realistic values of the
fibril thickness (b/L ' 0.001–0.005) and many more basis
functions are needed in order to capture well the spatial
structure of the modes.

5.1. Dependence of fast mode frequency on the fibril
thickness

We first study the dependence of the mode frequency on
the half-thickness of the fibril, b. The analytical results
for even and odd modes are plotted separately in Figs. 2a
and b, which clearly show the presence of frequency cut-
offs at ωcut = π

2
vAc
L and at ωcut = π vAc

L , respectively.
These upper cut-offs were already discussed by JNR97
and they are important since, for ω > ωcut, modes become
leaky and decay in time by driving waves in the coronal
medium. The occurrence of cutoffs is similar to that found
for coronal slabs and loops (e.g. Edwin & Roberts 1982,
1983; Roberts et al. 1984), but there are some facts here
that should be highlighted.

It must be emphasized that the difference between the
analytical treatment in JNR97 and ours is that those au-
thors just used one basis function for each mode, so their
solution does not match properly at the boundary b = L
and can be considered a sort of first approximation to
the correct solution. Hence, from the comparison between
JNR97’s Fig. 3 and our Fig. 2, it may seem that the proper
treatment of this “jump” condition does not give rise to
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Fig. 2. Dimensionless frequency, ωL/vAc, versus half-thickness
of the prominence fibril, b/L, for a) even modes and b) odd
modes (only the 5 lower frequency odd modes for each sym-
metry are shown). These results correspond to W/L = 0.1,
ρe/ρc = 0.6 and ρp/ρc = 200. The solid lines represent kink
modes whether the dashed ones are sausage modes.

drastic modifications in the frequency of modes, but it will
now be shown that this is only the case for unrealistic val-
ues of the fibril thickness and that for 2b ≤ 500 km, such
as suggested by observations, the ω and spatial proper-
ties of fast modes are the wrong ones if conditions (23)
at |x| = b are not considered. We have replotted Fig. 2
using a logarithmic axis for the fibril half-thickness (see
Fig. 3) and it is obvious that the even and odd funda-
mental modes do not show a frequency cut-off and that,
instead, they display a maximum at their respective ωcut,
which they approach asymptotically as b→ 0. This result
is in contradiction with that obtained by JNR97, since
their fundamental even and odd modes reach their cor-
responding cut-off frequency for bcut/L = 0.08 and 0.04,
and become evanescent for b < bcut.

It has been said before that there is no solution for
ωL/vAc > π/2 (even modes). In this situation the fun-
damental basis function becomes leaky and, because the
summatory in Eq. (22) always includes this first basis
function, no solution holds the requirement that |u| → 0
exponentially as |x| → ∞. That is the reason why all

Fig. 3. Plot of the data in Fig. 2 using a logarithmic axis for
b/L. Notice that fundamental even and odd modes do not have
a frequency cut-off, but exist for very small values of the fibril
thickness.

harmonics in Fig. 2 have the same cut-off frequency. Odd
modes display a similar behaviour, but taking into account
that the cut-off frequency is ωL/vAc = π.

5.2. Exploring the parameter space

We next investigate the effect of modifying the parameters
ρp/ρc, ρe/ρc and W/L with respect to the values consid-
ered so far. Some simulations have been performed with
other possible combinations of these parameters since, in
real prominences, different fibrils are probably character-
ized by different density and/or length. Our approach is
to concentrate on the frequency of modes and to compare
the resulting ω vs. b/L diagrams with Fig. 2.

Varying the quantity ρe/ρc does not give rise to impor-
tant changes in ω, specially because one does not expect
the density in the coronal environment and in the evacu-
ated part of the fibril to be much different from one an-
other. Calculations have been carried out with ρe/ρc = 0.3
and ρe/ρc = 1, but the differences are very small (some-
times under our working precision).

The effects of modifying the other two parameters are
more important and, for example, by increasing the ratio
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Fig. 4. Variation of frequency with the fibril half-thickness for
kink even modes (W/L = 0.1, ρe/ρc = 1 and ρp/ρc = 1000).
A range of b/L smaller than that used in Figs. 2 and 3 has
been selected to better show the behaviour for realistic values
of this parameter. Dots are used to mark solutions for which
the spatial profile of vx is plotted in Fig. 5.

of prominence to coronal density from 200 to 1000 (quite
a reasonable value), Fig. 2 changes to Fig. 4. It can be ap-
preciated that, for a fixed fibril thickness, the number of
normal modes supported by the fibril increases when ρp/ρc

is increased (something similar happens with the param-
eter W/L). Therefore, for realistic values of b/L ≤ 0.01,
higher harmonics could also be excited in a prominence
fibril.

Another noticeable effect in Fig. 4 is mode coupling
between fast modes, which arises from their different spa-
tial structure. Let us concentrate on the first and sec-
ond kink even harmonics for b/L = 0.075 (points a and
b in Fig. 4). Their corresponding eigenfunctions, shown
in Figs. 5a and b, have two extrema in the x-direction
and two extrema in the z-direction, respectively. During
the coupling (points c and d in Fig. 4, b/L = 0.1) the
two modes start to interchange their spatial structure (cf.
Figs. 5c and d) and the extrema do not lie parallel to ei-
ther the x- or z-axis. Finally, after the coupling (points e
and f in Fig. 4, b/L = 0.125) the first harmonic displays
two extrema in the x-direction, whereas the second har-
monic has two extrema in the z-direction (Figs. 5e and f)
and the structure interchange is finished. It is clear that
this coupling is only possible because of the summation
of different basis functions in Eqs. (15) and (19), which is
forced by the fact that solutions must be continuous at the
interfaces |x| = b. Obviously, the fundamental mode does
not couple to higher harmonics because its spatial shape,
with only one maximum, does not allow it to interact with
other modes.

5.3. Spatial structure of eigenfunctions

We next concentrate on the shape of eigenfunctions. First
of all, because of the sum in Eqs. (15) and (19), the ob-
tained solutions are not separable functions in x and z
(that is, vx(x, z) 6= f1(x) · f2(z)). This point has become

clear with the contour plots in Fig. 5, specially with pan-
els c and d.

It was mentioned above that the fundamental kink
even and odd modes are those suitable for driving oscil-
lations in prominence fibrils, for which b/L is probably
smaller than 0.01 (cf. Figs. 3 and 4). Thus, we start with
the first of these modes and represent its spatial structure
by means of cuts along the x- and z-directions. Figure 6a,
which corresponds to a very thick fibril (b/L = 0.1), shows
that the velocity amplitude quickly decays across the fib-
ril (x/L > 0.1) and that it becomes almost zero at a dis-
tance about ten times the fibril half-thickness. Along the
loop axis (Fig. 6b), vx also decreases from its maximum
value at the fibril centre. However, for a realistic, thin
fibril there is a noticeable amplitude far away from the
dense part (Fig. 6c) and it is necessary to move a distance
x ≈ 103−104 b from the fibril for perturbations to vanish.
Therefore, the excitation of this kind of modes in a promi-
nence fibril can also excite perturbations in neighbouring
threads and so it is expected that fibrils do not oscillate
individually but in groups.

Regarding the kink odd fundamental mode, its spatial
structure is such that vx does not achieve its maximum
amplitude at the fibril centre, but somewhere along the
thin loop (see Fig. 7). In fact, for the values of b/L consid-
ered here, the velocity maximum occurs in the evacuated
part of the loop rather than inside the cool region and
the amplitude in the fibril decreases as the loop thick-
ness is decreased. Thus, because of their small velocity
inside fibrils, kink odd modes may be difficult to detect
observationally.

Finally, it is worth mentioning what happens when
other harmonics approach the cut-off frequency, a situa-
tion that can be studied with the numerical code. Just be-
low ωcut the velocity only vanishes at long distances from
the fibril in the x-direction (similarly to the fundamen-
tal even kink mode, cf. Fig. 6c) and, as ωcut is exceeded,
the mode becomes a free wave and it does not satisfy the
boundary conditions vx = 0 as x→ ±∞.

5.4. Oscillatory period

We finally concentrate on the period of oscillation for var-
ious parameter values and compare them with observa-
tional data (see Table 1). Although the equilibrium con-
figuration used lacks some of the properties of a real fibril,
like its three-dimensional structure or the pressure gra-
dient force, a comparison can be made. First of all, the
parameters in JNR97 have been taken and, by compar-
ing with their Table I, it turns out that periods are not
too different when the MHD boundary conditions at the
loop-corona interface are included. The reason for this be-
haviour is that the modes in JNR97 essentially correspond
to the dominant terms in Eqs. (15) and (19) and so provide
a good approximation to the mode frequency.

Signatures of periods in the 5–15 min range (such as
the ones in Table 1) have been abundantly reported in
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Fig. 5. Contour plots of vx at the dots marked in Fig. 4, showing the change in shape of eigenfunctions as the first and second
harmonics (kink even symmetry) couple together. These modes correspond to W/L = 0.1, ρp/ρc = 1000 and ρe/ρc = 1. The
dimensionless fibril half-thickness is a) and b) b/L = 0.075, c) and d) b/L = 0.1, and e) and f) b/L = 0.125. Solid and
dashed lines represent, respectively, positive and negative contour values, while the thick, solid line corresponds to zero vx. The
boundaries between the dense and evacuated part of the loop and the coronal medium have been plotted using dotted lines.
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Fig. 6. The fundamental kink even mode has a single maximum located at x = z = 0. The spatial structure of this mode
is here displayed for two different values of the fibril thickness through cuts a) and c) in the direction z = 0 (i.e. across the
centre of the fibril), and b) and d) in the direction x = 0 (i.e. along the axis of the fibril). a) and b) vx for a very thick fibril
(b/L = 0.1), shown to illustrate the good agreement between the analytical and numerical solutions (solid lines and empty
circles, respectively). c) and d) Analytical and numerical solutions (solid lines and empty circles) for a typical value of fibril
thickness, b/L = 0.001. The number of basis functions kept to obtain the analytical solution is N = 70. Other parameter values
used to obtain the two eigensolutions are W/L = 0.1, ρp/ρc = 1000 and ρe/ρc = 1. The use of various grids of different but
uniform mesh sizes to properly capture the spatial structure of these modes is clearly appreciated in the four panels.

Table 1. Period of fast modes in a prominence fibril with ρe/ρc = 0.6, ρp/ρc = 200 and W/L = 0.1. The magnetic field strength
and coronal density have been taken as B0 = 5 G and ρc = 8.37 × 10−13 kg/m3, so the Alfvén speed is vAc = 488 km s−1.

Fast Mode Type of L = 105 km L = 3× 104 km

solution b = 100 km b = 200 km b = 100 km b = 200 km

Fundamental numerical 13.70 min 13.79 min 4.83 min 5.77 min

kink even analytical 13.70 min 13.80 min 4.79 min 5.81 min

Fundamental numerical 6.84 min 6.84 min 2.47 min 3.15 min

kink odd analytical 6.84 min 6.84 min 2.45 min 3.15 min

the literature, e.g. the 8–9 min and 14–16 min oscillations
observed by Yi et al. (1991) and Yi & Engvold (1991).
Obviously, this does not mean that waves detected by
these authors are actually fast modes and until better
models are considered and better experimental informa-
tion becomes available it will be difficult to make a true
comparison between theoretical and observational results.

6. Conclusions

Analytical and numerical techniques have been used in
this paper to investigate the features of fast modes prop-
agating in a thin, cool prominence fibril. Very accurate
analytical solutions can be obtained with only a few basis
functions for modes with simple spatial structure in thick
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Fig. 7. Cuts of the velocity of the fundamental kink odd mode along the loop axis, x = 0, for W/L = 0.1, ρp/ρc = 1000,
ρe/ρc = 1 and a) b/L = 0.005 (ωL/vAc = 2.063), b) b/L = 0.002 (ωL/vAc = 3.036), c) b/L = 0.0015 (ωL/vAc = 3.127), and
d) b/L = 0.001 (ωL/vAc = 3.140). The four solutions have been computed numerically using a mesh of non-uniformly spaced
points The mode also expands in the x-direction when b/L is raised (not shown in plots).

fibrils, but many more harmonics are needed for thin fib-
rils and/or higher harmonics (i.e. modes with more oscil-
lations in the x- and/or z-direction), with the subsequent
increase in the computational time required. In addition,
obtaining vx in thin fibrils by means of the analytical pro-
cedure is rather cumbersome and so the numerical code
has been used for this task, although comparisons have
been done (see for example Fig. 6) and the agreement is
excellent. Besides, this code can be used to study other
symmetries and to take into account the influence of slow
modes when the plasma pressure is not neglected.

Two are the main conclusions that can be extracted
from our results. First, prominence fibrils can only support
a few modes of oscillation, those with smaller frequency,
since high harmonics cannot be trapped inside the thin
loop. Starting from a thick fibril, fast modes increase their
frequency as the fibril thickness is reduced and, as soon as
they exceed the cut-off frequency corresponding to kink
and sausage modes, they become oscillatory. This is not
the case, however, with the fundamental even and odd
kink modes, whose ω tends asymptotically to ωcut but
never reaches this value. Second, it has been shown that
the spatial structure of the fundamental even and odd
kink modes is such that the velocity amplitude outside
the fibril takes large values over long distances, the reason
being that their frequency is so close to ωcut that they are
little confined to the prominence.

A consequence of the above results is that if fast modes
were excited in the kind of fibril considered, most of the
energy would be pumped out into the corona. Modes are
not very well trapped by the fibril structure and, although
the density of the coronal environment is very small com-
pared to that of the dense material, the external region
is much larger than the fibril and its total energy content
can be comparable to the energy contained in the fibril.
Therefore, this physical effect can give rise to damping of
perturbations by means of energy leakage between fibrils.
In addition, from the current view of prominences as made
of a large number of thin fibrils packed together, it seems
that fibrils would actually oscillate in groups rather than
individually and that if a single fibril is disturbed it will
excite perturbations in its neighbours, which may help to
explain how prominence oscillations are damped in time.
An important corollary is that the study of the collec-
tive modes of a multi-fibril prominence model is needed
to better understand the oscillatory properties of these
objects. Note that the above conclusion about fibrils os-
cillating in groups rather than individually is not in con-
tradiction with the observations by Yi et al. (1991) and
Yi & Engvold (1991) since the spatial resolution in their
data is ≥1 arcsec.

There are many extensions that can be made on the
present work. Nevertheless, the analytical solution de-
veloped here is no longer useful, except for the case of
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cylindrical symmetry with no angular dependence and
maybe for a slab with other density profiles. Further work
will be done to use other features of the numerical code,
like its ability to include slow modes by retaining the
plasma pressure force.
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Appendix A: Deduction of the dispersion relations

In this appendix the intermediate steps to obtain the dis-
persion relations are presented. Using Eqs. (17), (22) and
(25), and imposing Eq. (24), we obtain

A(−)
n =

∞∑
m=1

Hmn

[
Bcos
m cosh

(
λ(l)
m b
)
−Bsin

m sinh
(
λ(l)
m b
)]
,(A.1)

λ(c)
n A(−)

n = −
∞∑
m=1

Hmn λ
(l)
m

[
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m sinh
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λ(l)
m b
)

−Bsin
m cosh

(
λ(l)
m b
)]
, (A.2)

A(+)
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Hmn
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+Bsin
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Eliminating A
(−)
n and A

(+)
n from these equations, we

obtain
∞∑
m=1

Hmn
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∞∑
m=1

Hmn

{
Bcos
m

[
λ(c)
n cosh

(
λ(l)
m b
)

+ λ(l)
m sinh

(
λ(l)
m b
)]

+Bsin
m

[
λ(c)
n sinh

(
λ(l)
m b
)

+ λ(l)
m cosh

(
λ(l)
m b
)]}

= 0.(A.6)

We can further simplify this system of equations consid-
ering sausage (Bcos

m = 0, odd modes about x = 0) and
kink (Bsin

m = 0, even modes about x = 0) oscillations sep-
arately. Notice that this could have been done in Eq. (22)
by separating the two symmetries in the x-direction. We
then obtain Eqs. (27) and (28) for sausage and kink modes
simply by subtracting or adding Eqs. (A.5) and (A.6).

Appendix B: Special coefficients

It has been mentioned in Sect. 3 that κe < 0 holds for the
first basis function h

(l)
1 . For this function Eqs. (43), (44)

are not valid, and must be replaced by

h
(l)
1 (z) =

Λ∗ev

 cos(κpW ) sinh[κe(L+ z)], −L < z < −W,
sinh[κe(L−W )] cos(κpz), −W < z < W,
cos(κpW ) sinh[κe(L− z)], W < z < L,

(B.1)

and

h
(l)
1 (z) =

Λ∗od

 − sin(κpW ) sinh[κe(L+ z)], −L < z < −W,
sinh[κe(L−W )] sin(κpz), −W < z < W,
sin(κpW ) sinh[κe(L− z)], W < z < L,

(B.2)

with

(Λ∗ev)−2 = (L−W ) cos2(κpW )
−W sinh2[κe(L−W )]

− 1
2κe

cos2(κpW ) sinh[2κe(L−W )]

− 1
2κp

sinh2[κe(L−W )] sin(2κpW ), (B.3)

(Λ∗od)−2 = (L−W ) sin2(κpW )
−W sinh2[κe(L−W )]

− 1
2κe

sin2(κpW ) sinh[2κe(L−W )]

+
1

2κp
sinh2[κe(L−W )] sin(2κpW ). (B.4)

In addition, some coefficients in Eqs. (47) and (48) are
also different,

H1,2m−1 = Λ∗odL
− 1

2

{
sin[κe(L−W )]

×
(

sin[(κp − κev
c )W ]

κp − κev
c

+
sin[(κp + κev

c )W ]
κp + κev

c

)
+ 2

cos(κpW )
κ2

e + κev 2
c

(κe cosh[κe(L−W )] cos(κev
c W )

− κev
c sinh[κe(L−W )] sin(κev

c W ))
}
, (B.5)

H2,2m = Λ∗evL
− 1

2

{
sin[κe(L−W )]

×
(

sin[(κp − κod
c )W ]

κp − κod
c

− sin[(κp + κod
c )W ]

κp + κod
c

)
+ 2

sin(κpW )
κ2

e + κev 2
c

(κe cosh[κe(L−W )] sin(κev
c W )

+ κev
c sinh[κe(L−W )] cos(κev

c W ))
}
. (B.6)
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Equations (27) and (28) must be modified and, taking
into account the above formulas, the dispersion relations
for kink and sausage modes become

H1nB
cos
1

[
λ(c)
n cos

(
λ

(l)
1 b
)
− λ(l)

1 sin
(
λ

(l)
1 b
)]

+
∞∑
m=2

Hmn

×Bcos
m

[
λ(c)
n cosh

(
λ(l)
m b
)

+ λ(l)
m sinh

(
λ(l)
m b
)]

= 0, (B.7)

H1nB
sin
1

[
λ(c)
n sin

(
λ

(l)
1 b
)

+ λ
(l)
1 cos

(
λ

(l)
1 b
)]

+
∞∑
m=2

Hmn

×Bsin
m

[
λ(c)
n sinh

(
λ(l)
m b
)

+ λ(l)
m cosh

(
λ(l)
m b
)]

= 0. (B.8)

There is also another important remark: for other sets
of parameters, other basis functions reach their critical
frequency and then κe < 0 holds for them too. This has
to be taken into account in Eqs. (B.7) and (B.8), which
would have more terms in the sum similar to the first one.

The rest of the work has been done by numerical com-
putations. First of all we need to solve Eqs. (42) and (41)
numerically to obtain the set of eigenvalues. Then we can
calculate the κ′s and the Hnm from Eqs. (B.5) and (B.6).
Finally one is able to write down the determinant com-
ing from Eqs. (B.8) and (B.7) and solve it to find out the
characteristic frequencies of our model.

Appendix C: Finite-difference discretization
of first and second order derivatives

Let us consider a two-dimensional mesh of points (ψi, χj)
(following Oliver et al. 1996 we use the names ψ and χ for
the variables in the plane perpendicular to the y-direction.
In the present case, ψ = z and χ = x.) We define the grid
spacings in the two directions as,

hi = ψi − ψi−1, i = 2, 3, . . . , Nψ, (C.1)

gj = χj − χj−1, j = 2, 3, . . . , Nχ, (C.2)

with Nψ and Nχ the number of grid points in the ψ-
and χ-directions. Next, consider a function f(ψ, χ) whose
derivatives are to be approximated by finite difference for-
mulas at a point (ψi, χj). We now expand the function f in
Taylor series around this point to calculate its value at the
eight mesh points around (ψi, χj) and obtain expressions
of the form

fi+1,j = fi,j + hi+1
∂f

∂ψ
+

1
2
h2
i+1

∂2f

∂ψ2

+
1
6
h3
i+1

∂3f

∂ψ3
+O

(
h4
i+1

)
, (C.3)

fi+1,j−1 = fi,j + hi+1
∂f

∂ψ
− gj

∂f

∂χ

+
1
2
h2
i+1

∂2f

∂ψ2
− hi+1gj

∂2f

∂ψ∂χ
+

1
2
g2
j

∂2f

∂χ2

+
1
6
h3
i+1

∂3f

∂ψ3
− 1

2
h2
i+1gj

∂3f

∂ψ2∂χ

+
1
2
hi+1g

2
j

∂3f

∂ψ∂χ2
− 1

6
g3
j

∂3f

∂χ3

+O
(
max

{
h4
i+1, h

3
i+1gj , h

2
i+1g

2
j , hi+1g

3
j , g

4
j

})
,

(C.4)

where fi,j = f(ψi, χj), fi+1,j = f(ψi+1, χj), etc., and all
partial derivatives are evaluated at the point (ψi, χj).

Now, approximate formulas for the partial derivatives
can be determined by combining some or all of the above
series expansions to eliminate unwanted partial deriva-
tives. Then we have
∂f

∂ψ
=

1
hi + hi+1

[pifi+1,j + (qi − pi)fi,j

− qifi−1,j ] +O(hihi+1), (C.5)

where pi = hi/hi+1 ≡ q−1
i . Notice that this expression,

which is second order accurate in the mesh size, reduces
to the well-known formula for equally spaced points after
setting hi = hi+1 = h.

Next, second-order derivatives are approximated by

∂2f

∂ψ2
=

2
hi+1(hi + hi+1)

fi+1,j −
2

hihi+1
fi,j

+
2

hi(hi + hi+1)
fi−1,j + O

(
h2
i+1 − h2

i

hi + hi+1

)
· (C.6)

This expression is first order accurate in h, but it becomes
second order accurate for uniform spacing (hi = hi+1).
There are other finite-difference formulas to compute this
derivative using other combinations of fi,j , fi+1,j , etc., but
none of them achieves second order accuracy.

Finally, the second order, cross derivative is also
needed,

∂2f

∂ψ∂χ
=

α1

hi+1gj+1
(fi+1,j+1 + fi,j − fi,j+1 − fi+1,j)

+
α2

higj+1
(fi−1,j + fi,j+1 − fi−1,j+1 − fi,j)

+
α3

higj
(fi,j + fi−1,j−1 − fi−1,j − fi,j−1)

+
α4

hi+1gj
(fi+1,j + fi,j−1 − fi,j − fi+1,j−1).(C.7)

In order to get second order accuracy, the quantities α1,
α2, α3 and α4 must satisfy the following conditions at each
point (ψi, χj)

α2 =
1

sj + 1
− α1, (C.8)

α3 =
1

pi + 1
− α2, (C.9)

α4 =
1

qi + 1
− α1, (C.10)
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where sj = gj+1/gj and α1 is a free parameter here taken
equal to 0.25. This choice is not arbitrary, but arises from
the fact that a possible set of values for a uniform mesh
is α1 = α2 = α3 = α4 = 0.25.

So we are left with finite difference expressions for the
first and second order derivatives of a function with re-
spect to ψ and χ (the last ones are not given here and
are similar to Eqs. (C.5) and (C.6)). This function can be
either the normal or parallel velocity component (respec-
tively vx and vz in the present configuration). Upon sub-
stituting the approximations for derivatives into the lin-
earized MHD equations, one gets an algebraic eigenvalue
system which is solved using the procedure described in
Oliver et al. (1996).
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