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Abstract. The analytical solution of the plane-parallel radiative transfer equation is obtained in the two-stream
approximation for a large class of continuous distributions of the de-excitation coefficient ε (constant, linear,
parabolic, with spikes etc.). We present also the method of the discrete space theory for obtaining solutions of the
transfer equation in the media with strong density inhomogeneities. These sets of the analytical solutions can be
used for the solution of the inverse problem. The deduction of the internal distribution of ε from observational data
is facilitated in the case of isothermal media, since the characteristic behavior of the solution refers to the certain
behavior of ε. As an example, we find the corresponding parameters of the constant and linear distributions of ε
precisely.
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1. Introduction

From the time of the first derivation of the transfer equa-
tion about a century ago much work has been dedicated to
its specific forms and their solution. Unfortunately, among
the large number of published algorithms there are still
only very few methods that provide exact solutions and
they refer to rather particular situations. So, to our knowl-
edge all analytical solutions have been obtained under as-
sumption of a constant de-excitation coefficient ε or for ε
approximated by a piecewise constant function. However,
there are many cases, e.g. the transmission of light through
the earth’s atmosphere, the emission of radiation by non-
isotropic high-temperature gas streams, where the prop-
erties of the medium may significantly vary with position.
The difficulties associated with a complex behavior of ε
can be overcome by applying numerical methods. But in
spite of the good success they give little insight into the
general behavior of the solution of the transfer equation
and sometimes they are extremely CPU-time and memory
consuming. In addition the numerical methods are not effi-
cient when one deals with media with many strong density
inhomogeneities. Note that such media are ubiquitous as
high resolution observations of the solar atmosphere, nova
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and supernova remnants, accretion disks etc. have shown.
For the necessity to include the strong spatial variations in
reliable models see e.g. Gu et al. (1997). Unfortunately, in
contrast to the Navier-Stokes equations, for the radiative
transfer equation there is not yet a general homogeniza-
tion scheme available that can deal with such situations,
and exististing algorithms (cf. Gierens et al. 1986; Lindsey
& Jefferies 1990; Nikoghossian et al. 1997) have a very
limited range of application.

In the present paper we have obtained the analytical
solution of the radiative transfer equation for the different
distributions of ε in the plane-parallel media. The descrip-
tion of the problem, the basic equations and the simplify-
ing assumptions are given in Sect. 2. In Sect. 3 we present
the general solution which requires for the given ε(τ) only
the knowledge of linearly independent solutions of a sec-
ond order homogeneous differential Eq. (2). In Sect. 4 we
give several examples of ε(τ) and corresponding linearly
independent solutions. In the same section we offer also a
method of the solution of the transfer equation which can
be useful for ε(τ) with spikes. Having obtained the analyt-
ical solutions for the different behaviors of ε(τ) the solu-
tion of the inverse problem becomes possible. Section 5 is
dedicated to the possibility of the diagnostic of ε(τ) from
observational data. In Sect. 6 the case of the medium with
a stochastic distribution of ε is considered. The solution
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Table 1. The different kinds of ε(τ ) and corresponding linearly independent solutions of the homogeneous Eq. (2). The divergence
at τ = 0 in the last three examples can be removed by an appropriate coordinate shift

ε(τ ) Y1(τ ) Y2(τ )

b2 cosh(bτ ) 1
b sinh(bτ )

aτ + b Ai
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)
π |a|
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a2τ2 + b a1/4e−

aτ2
2 F (a+b
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2 ; aτ2) a−1/4e−

aτ2
2 τF ( 3a+b
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τ2 + b2a2τ2b

τ2

√
τ Km(aτ b) 1
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√
τ Im(aτ b)

1
4 −

b−2a
2τ −

b(2−b)
4τ2 τ

b
2 e−

τ
2 F (a, b; τ ) 1

1−b τ
1−b

2 e−
τ
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τ2 + b2a2τ2b

4τ2 τ
1−b

2 Mk,−m(aτ b) 1
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τ
1−b
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Ai(τ ), Bi(τ ) – the Airy functions,
Im(τ ), Km(τ ) – the modified Bessel functions,
F (a, b; τ ) – the Kummer confluent hypergeometric function,
Mk,m(τ ) – the Whittaker function, 2m 6= ±1,±2,±3...

is obtained by the method of the discrete space theory.
Section 7 contains a summary.

2. The radiative transfer equation

The radiative transfer equation for the specific intensity
I(τ) in plane-parallel media reads

µ
d
dτ
I(τ) = −I(τ) + (1− ε(τ))J(τ) + ε(τ)B(τ), (1)

where ε(τ) is the de-excitation coefficient, B(τ) is the
Planck function, J(τ) is the mean intensity, µ = cos θ,
θ is an angle between the normal and a ray of radiation.

Let us suppose that the radiation field can be charac-
terized by a discrete number of directed streams (“dis-
crete ordinates”) to mimic the true variation of inten-
sity with angle. To simplify the problem we consider only
two rays in the opposite directions µ = ±1 that gives
already reasonably accurate results. The Feautrier tech-
nique (Mihalas 1978) allows us to transform Eq. (1) into
a second order differential equation(
− d2

dτ2
+ ε(τ)

)
J(τ) = ε(τ)B(τ), (2)

where the mean intensity J(τ) and the flux F (τ) are ex-
pressed through the specific intensities in the positive and
negative directions by the following way

J(τ) =
1
2

(I+(τ) + I−(τ)), F (τ) =
1
2

(I+(τ) − I−(τ)).

We look for the solution in a slab whose mid plane is a
symmetry plane. The optical depth is measured away from
the symmetry plane. It equals ∆ and −∆ at the upper
and lower boundary, respectively. Due to the symmetry
it is sufficient to obtain the solution e.g. for the upper
part 0 ≤ τ ≤ ∆. We assume no incident radiation at the

boundary I−(∆) = 0. At the symmetry plane the radia-
tion field satisfies the reflection condition I+(0) = I−(0).
Since in the two-stream approximation F (τ) = −J ′(τ),
the boundary conditions can be written as

J(∆) + J ′(∆) = 0, J ′(0) = 0, (3)

where differentiation with respect to τ is denoted by
prime.

3. The general solution

Let {Y1, (τ), Y2(τ)} be linearly independent solutions of
the homogeneous Eq. (2) satisfying the normalization con-
dition of the Wronskian

W = Y1(τ)Y ′2 (τ) − Y2(τ)Y ′1 (τ) = 1.

Then the formal solution of Eq. (2) can be written as the
following

J(τ) = C1 Y1(τ) + C2 Y2(τ) +

+
∫ τ

0

(Y1(τ)Y2(τ ′)− Y1(τ ′)Y2(τ)) B(τ ′) dτ ′, (4)

J ′(τ) = C1 Y
′

1(τ) + C2 Y
′

2(τ) +

+
∫ τ

0

(Y ′1(τ)Y2(τ ′)− Y1(τ ′)Y ′2(τ)) B(τ ′) dτ ′, (5)

where B(τ) = ε(τ)B(τ). C1 and C2 are arbitrary
constants whose values are defined by the boundary
conditions (3).

After some transformations (see Appendix A) one can
get

J(τ) =
(Z(∆)σY (τ))
(Z(∆)σY ′(0))

∫ τ

0

(Y ′(0)σY (τ ′))B(τ ′) dτ ′

+
(Y ′(0)σY (τ))
(Z(∆)σY ′(0))

∫ ∆

τ

(Z(∆)σY (τ ′))B(τ ′) dτ ′, (6)
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Fig. 1. The runs of the mean intensity in the optically thin (left) and optically thick (right) isothermal, B(τ ) = 1, slabs with
the different distributions of ε(τ ) (see insert)

Fig. 2. The mean intensity as the function of the optical depth and ε(τ ) whose internal distribution can be approximated by a
resonance curve. The dependence on the shape and the position of the resonance is shown

where we use vectors

Y (τ) =
(
Y1(τ)
Y2(τ)

)
, Z(τ) =

(
Y1(τ) + Y ′1(τ)
Y2(τ) + Y ′2(τ)

)

and matrix σ =
(

0 1
−1 0

)
. Since (Z(∆)σY (∆)) = −1,

the mean intensity at the boundary τ = ∆ becomes

J(∆) =
∫ ∆

0

(Y (τ ′)σY ′(0))
(Z(∆)σY ′(0))

B(τ ′) dτ ′. (7)

As one can see the exact solution of the radiative trans-
fer equation for the given run of ε(τ) requires only the
knowledge of the linearly independent solutions of the
homogeneous Eq. (2).

4. Examples

Some examples of the continuous distributions of ε(τ)
and corresponding solutions Y1(τ) and Y2(τ) (taken from

Abramowitz & Stegun 1972; Kamke 1965) have been col-
lected in Table 1. The free parameters must be chosen in
such a way to satisfy the condition of the location of ε(τ)
in the interval between 0 to 1.

In spite of the small variation range of ε(τ), the solu-
tions obtained for different ε(τ) may have significant dif-
ference, especially in optically thick media. So, in Fig. 1
the solutions of Eq. (2) with constant and linear ε(τ)
are shown. In optically thin isothermal media (left part)
the difference does not exceed 10%. However, it becomes
larger with the increasing of the total optical thickness
and in the optically thick media can reach at some points
50% (right part).

Although the functions presented in Table 1 are suit-
able for the approximation of a large variety of inter-
nal distributions of ε(τ), they cannot be applied for the
description of media with strong density condensations.
Furthermore, the solution of the homogeneous Eq. (2)
can hardly be found directly with ε(τ) approximated by a
function with spikes. To avoid these difficulties we suggest
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Fig. 3. The mean intensity at the boundary as a function of the
optical thickness ∆. The curves correspond to the different runs
of ε(τ ) (see insert): ε(τ ) = τ/∆ (dashed), ε(τ ) = 0.6(τ/∆)2 +
0.3 (dashed-dotted), ε(τ ) = −τ/∆ + 1 (dotted) and ε(τ ) = 0.5
(solid)

the following procedure: if ε(τ) can be represented as

ε(τ) = −A(τ)
d

dτ

(
A′(τ)
A2(τ)

)
+ εT(τ)A4(τ), (8)

then the corresponding solutions of the homogeneous
Eq. (2) can be expressed through already known solutions
in the following way

Yi(τ) =
1

A(τ)
Y T
i (φ(τ)), (i = 1, 2) (9)

where functions εT(τ), Y T
1 (τ) and Y T

2 (τ) are taken from
Table 1, A(τ) is known function and φ(τ) can be found
from differential equation φ′(τ) = A2(τ).

For example, the choice of

A(τ) = 0.9 +
0.3

0.3 + (τ − 8)2
, εT = 0.047

leads to the dotted curves in the right part of Fig. 2. The
altering of the parameters results in the other curves.

5. Diagnostics of ε(τ)

The prediction of the internal structure of a medium from
observational data is one of the most important task in
astrophysics. The only observable quantity of the prob-
lem is the emergent intensity that is a function of wave-
length λ. The total optical thickness of a layer also de-
pends on λ. The knowledge of these functions allows us to
plot J(λ(∆)) = J(∆) and therefore makes the prediction
of ε(τ) possible. In the general case when the solution de-
pends both on the temperature and on ε(τ) the diagnostic
of ε(τ) is hardly possible. However, in the isothermal me-
dia the features of the solutions associate only with the
definite behavior of ε(τ) and therefore the derivation of
the corresponding parameters of such behavior seems not
to be so hopeless. In order to confirm that we consider
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Fig. 4. The mean intensity at the boundary of a medium with
a strong density condensation

a slab with B = 1, constant and linear ε(τ). In these cases
the integration in (7) gives

J(∆) =
√
ε tanh(

√
ε∆)

1 +
√
ε tanh(

√
ε∆)

for ε(τ) = ε, (10)

J(∆) =
A

1 +A for ε(τ) =
( a

∆

)
τ + b, (11)

where

A =
a∆1/3

|a|2/3

{
Ai′
(

a+ b

(|a|/∆)2/3

)
Bi′
(

b

(|a|/∆)2/3

)
− Ai′

(
b

(|a|/∆)2/3

)
Bi′
(

a+ b

(|a|/∆)2/3

)}/
{

Ai
(

a+ b

(|a|/∆)2/3

)
Bi′
(

b

(|a|/∆)2/3

)
− Ai′

(
b

(|a|/∆)2/3

)
Bi
(

a+ b

(|a|/∆)2/3

)}
·

These expressions can be used now for the fitting of obser-
vational data and in the case of a good fit the parameters
of ε(τ) can be derived without much effort.

The derivation of the corresponding parameters can be
done much easier if we take into account the behavior of
these curves at the limit of large and small ∆. At the limit
of small ∆ these functions are proportional to ∆ whereas
at large ∆ they saturate (Fig. 3) in accordance with the
following

J(∆) =
√
ε

1 +
√
ε

J(∆) =
√
a+ b

1 +
√
a+ b

for ∆� 1, (12)

J(∆) = ε∆− ε2∆2

J(∆) = ε̄∆− ε̄2∆2
for ∆� 1, (13)

where ε̄ = (a+ 2b)/2.
We want to stress, however, that some features such as
spikes which occur in intermediate points may be missed
during the determination of the internal behavior of ε(τ)
by means of this method (Fig. 4).
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As mentioned above the presence of some peculiari-
ties can point to the definite behavior of ε(τ) and, thus,
simplify its diagnostic. For example, the maximum of the
function J(∆) may indicate to the linearly decreasing ε(τ)
(Fig. 3), although other distributions of the de-excitation
coefficient may also result in such feature.

6. Stochastic ε

In order to solve the radiative transfer equation in the
media with many strong density inhomogeneities we use
the method of the discrete space theory. For this purpose
we divide the slab into N layers

[0,∆] =
N⋃
j=1

[(j − 1)δ, jδ], δ =
∆
N
· (14)

The Planck function and the de-excitation coefficient are
assumed to be constant in each layers but their values
differ from one layer to an other

ε(τ) = εj = const
B(τ) = Bj = const

for τ ∈ [(j − 1)δ, jδ].

In addition, εj is a function of a random number rj whose
values may be independent as well as obey correlations
from layer to layer.

We do not use the formalism of Peraiah (1984) or that
of Schmidt & Wehrse (1987) based on the interaction prin-
ciple which relates the incident and emergent intensities in
a layer. Instead of these we propose another method which
relates the mean intensity and the flux at one boundary
of a layer with the same functions at another one. So, a
vector

J j(τ) =
(
Jj(τ)
J ′j(τ)

)
(15)

representing corresponding values in the jth cell can be
represented in terms of that in sell (j−1) by the following
equation (see Appendix B)

J j = U jJj−1 −KjBj , (16)

where

U j =
(

cosh(ωjδ) 1
ωj

sinh(ωjδ)
ωj sinh(ωjδ) cosh(ωjδ)

)
,

Kj =
(

cosh(ωjδ)− 1
ωj sinh(ωjδ)

)
, ωj =

√
εj .

Bj and εj denote the value of the Planck function and the
de-excitation coefficient at the upper boundary of each
layer.

A successive application of Eq. (16) – with the cor-
responding boundary conditions – allows us to study
the evolution of the mean intensity in the medium (see
Appendix B)

Jj =
(eB(N, j + 1))(fU(j, 1)f)

(eU(N, 1)f)

+
(eU(N, j + 1)h)(fW (j, 1))

(eU(N, 1)f)
, (17)

as well as to compute the value of J at the boundary

JN =
(fW (N, 1))
(eU(N, 1)f)

, (18)

where

U(j, i) = U jU j−1...U i, (i ≤ j),
B(j, i) = U(j, i+ 1)KiBi−1 +U(j, i+ 2)Ki+1Bi +

+ ...+U jKj−1Bj−2 +KjBj−1,

W (j, 1) = B0W 1 +B1 (U>(1, 1)W 2) + ...

+ Bj−1 (U>(j − 1, 1)W j),

with

W j = U>j σKj =
(
ωj sinh(ωjδ)

cosh(ωjδ)− 1

)
and

f =
(

1
0

)
, h =

(
0
1

)
, e =

(
1
1

)
, g =

(
1
−1

)
.

The representations given for the matrix U j and the
vectors Kj and W j are unfortunately not well suited
for numerical calculations, since the hyperbolic functions
involved lead to machine overflows for large δ. In or-
der to overcome this problem we extract factors X =
cosh(ωjδ) from the expressions. It can be shown that then
the X terms in the numerator and denominator of ex-
pressions (17)–(18) cancel, i.e we can use the following
formulae

U j =
(

1 1
ωj

tanh(ωjδ)
ωj tanh(ωjδ) 1

)
, (19)

Kj =
(

1− sech(ωjδ)
ωj tanh(ωjδ)

)
, W j =

(
ωj tanh(ωjδ)
1− sech(ωjδ)

)
.

One is left with equations that involve tanh and sech func-
tions only. If it is necessary, the sech(x) for large argu-
ments can be approximated by 2e−x. In this way we have
obtained convenient expressions that are well suited for
all optical depths.

In our example we divide the slab into 200 layers. We
require that values of εj lie in interval [0,1] and probability
of appearance of small εj be higher. As an example of such
εj we take the following

εj = 10−4rj , (20)

where rj are random numbers from the interval [0, 1].
One realization of ε is shown in Fig. 5. In Fig. 6 one can

see the set of solutions for 50 realizations of ε as well as the
solution for ε̄ in a medium with B = 1. Their statistical
distributions at different ∆ are shown in Fig. 7.

Since the number of layers does not change the width
of each layer becomes larger with the increasing of ∆ and ε
takes, thus, a block structure. This seems to be a reason of
large scattering at large ∆. In particular, the dependence
of the variation range on the number of layers shown in
Fig. 8 confirms this assumption.
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Fig. 5. An example of the stochastic distribution of ε
Fig. 6. Solutions obtained for 50 different realizations of ε. The
bold curve was obtained for ε̄

Fig. 7. Statistical distribution of J(∆) from Fig. 6. Top left: The mean value is 〈J〉 = 1.04 10−5, the standard deviation
σ = 0.14 10−5, the value of the bold curve (see Fig. 6) at this point is Jε̄ = 1.09 10−5. Top right: 〈J〉 = 1.03 10−2, σ = 0.14 10−2,
Jε̄ = 1.08 10−5. Bottom left: 〈J〉 = 0.24, σ = 1.65 10−2. Jε̄ = 0.247. Bottom right: 〈J〉 = 0.22, σ = 0.052, Jε̄ = 0.247

7. Summary

The analytical solutions of the plane-parallel radiative
transfer equation have been obtained for the large vari-
ety of the internal distributions of ε. We proposed also a
method for obtaining the solution for ε with spikes. This
allows us to deal with media with a small number of the
density inhomogeneities.

However, in very inhomogeneous media whose proper-
ties can only be treated statistically this method no longer

works. Therefore we had to use another technique, namely,
the method of the discrete space theory. The solution ob-
tained is written as a sequence of the products of 2 × 2-
matrices and two-components vectors that is very easy to
be implemented. It is no longer necessary to solve the sys-
tem of 2(N − 1) linear equations (N – number of layers)
(Wehrse 1981) or to use the method of the forward elimi-
nation and back substitution (Peraiah 1984) for the deter-
mination of the internal distribution of J . The problems
related to the finding of the corresponding inverse matrix
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Fig. 8. The variation range vs. the number of layers taken at
∆ = 50

and the keeping of many coefficients are thus avoided, so
that the numerical calculations are speeded up.

The presence of the analytical solutions enables us to
solve the inverse problem. The more accurate diagnostic
of ε can be done in the isothermal media, since there the
features of the solutions refer to the definite behavior of ε
only. By using the characteristic behaviors of the solutions
in the limit of the large and small ∆ the exact derivation
of the corresponding parameters is possible.

As mentioned in the Introduction, there are many
classes of objects for which a spectral analysis requires
the consideration of complicated depth dependencies of
ε (including stochastic ones) and their consequences for
the system parameters. We plan to apply the algorithm
developed here to the radiation fields of accretion disks.
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Appendix A:

The solutions of Eq. (2) are given by (4). Using the bound-
ary conditions (3) we get the integration constants C1 and
C2 in following form

C1 = −Y ′2(0)
∫ ∆

0

(Z(∆)σY (τ ′))
(Z(∆)σY ′(0))

B(τ ′) dτ ′, (A.1)

C2 = Y ′1(0)
∫ ∆

0

(Z(∆)σY (τ ′))
(Z(∆)σY ′(0))

B(τ ′) dτ. (A.2)

Substituting them into (4) we have

J(τ) = − Y1(τ)Y ′2 (0)
(Z(∆)σY ′(0))

∫ ∆

0

(Z(∆)σY (τ ′))B(τ ′) dτ ′

+
Y2(τ)Y ′1 (0)

(Z(∆)σY ′(0))

∫ ∆

0

(Z(∆)σY (τ ′))B(τ ′) dτ ′

+
∫ τ

0

(Y (τ)σY (τ ′))B(τ ′) dτ ′,

or

J(τ) =
(Y ′(0)σY (τ))
(Z(∆)σY ′(0))

∫ ∆

0

(Z(∆)σY (τ ′))B(τ ′) dτ ′

+
∫ τ

0

(Y (τ)σY (τ ′))B(τ ′) dτ ′. (A.3)

For arbitrary vectors U , V , X, Y the following identity
is valid

(U(u)σV (v))(X(x)σY (y)) = (A.4)
(U(u)σY (y))(X(x)σV (v))− (U (u)σX(x))(Y (y)σV (v)).

Breaking the interval of integration in the first integral
in (A.3) and using (A.4) we get (6)

Appendix B:

The Eqs. (4)–(5) can be written in a matrix form

J(τ) = R(τ)C +R(τ)σ
∫ τ

0

Y (τ ′)B(τ ′) dτ ′, (B.1)

with

R(τ) =
(
Y1(τ) Y2(τ)
Y ′1(τ) Y ′2(τ)

)
, C =

(
C1

C2

)
.

Taking into account the boundary conditions

J(0) =
(
J(0)

0

)
= J(0)f ,

J(∆) =
(

J(∆)
−J(∆)

)
= J(∆)g,

we get the formal solution as

J(τ) = U(τ, 0)J(0) +R(τ)σ
∫ τ

0

Y (τ ′)B(τ ′) dτ ′, (B.2)

where

U(τ1, τ2) = R(τ1)R−1(τ2), (τ1 ≥ τ2).

In the case of constant ε(τ) and B(τ) we obtain (16).
Let us now introduce new variables Φ and Ψ

Jj = Φj −Ψj , (j = 1, ..., N) (B.3)

which obey the following recurrent equations

Φj = U jΦj−1, Φ0 = J0,

Ψj = U jΨj−1 +KjBj−1, Ψ0 = 0.

Using notations

U(j, k) = U(j, i+ 1)U(i, k), (k ≤ i ≤ j),
U(j, j) = U j

we get

Φj = U(j, 1)Φ0,

Ψj = B(j, 1) = U(j, 2)K1B0 +U(j, 3)K2B1 + ...

+ U jKj−1Bj−2 +KjBj−1.
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The solution for jth interval thus becomes

J j = U(j, 1)J0 −B(j, 1). (B.4)

The value of J at the boundary reads

JN = JNg = U(N, 1)f J0 −B(N, 1).

Multiplying both parts of the equation by the vector e we
get

J0 =
(eB(N, 1))

(eU(N, 1)f)
·

The substitution of J0 into (B.4) gives

Jj = (fJ j)=(fU(j, 1)f) · (eB(N, 1))
(eU(N, 1)f)

−(fB(j, 1))

=
A(N, j, 1)

(eU(N, 1)f)
· (B.5)

Taking into account the following identity

B(N, 1) = U(N, j + 1)B(j, 1) +B(N, j + 1)

with

U(N,N + 1) = 1, B(N,N + 1) = 0

and

f · f> + h · h> = I

we get the expression of A(N, j, 1)

A(N, j, 1) = (fU(j, 1)f)(eB(N, 1))
− (eU(N, 1)f)(fB(j, 1))
= (fU(j, 1)f)(eU(N, j + 1)B(j, 1))
+ (fU(j, 1)f)(eB(N, j + 1))
− (eU(N, j + 1)f)(fU(j, 1)f)(fB(j, 1))
− (eU(N, j + 1)h)(hU(j, 1)f)(fB(j, 1))
= (fU(j, 1)f)(eB(N, j + 1))
+ (eU(N, j + 1)h)(fW (j, 1))

and thus Eq. (17).

(fW (j, 1)) = (fU(j, 1)f)(hB(j, 1))
− (hU(j, 1)f)(fB(j, 1))
= (fU>(j, 1)f)(hB(j, 1))
− (fU>(j, 1)h)(fB(j, 1))
= (fU>(j, 1)σB(j, 1)),

where we used an identity

f · h> − h · f> = σ.

Taking into account the following property

U>(j, i)σU(j, i) = σ,

we have

(fW (j, 1)) = (fU>(j, 1)σ[U (j, 2)K1B0 +U(j, 3)K2B1

+ ...U(j, j)Kj−1Bj−2 +KjBj−1])

= (fW 1)B0 + (fU>(1, 1)W 2)B1 + ...

+ (fU>(j − 1, 1)W j)Bj−1,

where W j are defined by (19).
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