## Structural properties of disk galaxies

### II. Intrinsic shape of bulges

^{1}
Instituto Astrofísico de
Canarias, Calle via Láctea s/n, 38200 La Laguna, Spain e-mail: [jairo;jalfonso]@iac.es

^{2}
Departamento de Astrofísica, Universidad de La Laguna,
38205 La Laguna, Tenerife, Spain

^{3}
Institut d'Astrophysique de Paris,
C.N.R.S.-U.P.M.C., 98bis Boulevard Arago, 75014 Paris, France

^{4}
Dipartimento di Astronomia, Università di Padova,
vicolo dell'Osservatorio 3, 35122 Padova, Italy e-mail: enricomaria.corsini@unipd.it

Received:
25
January
2010

Accepted:
23
June
2010

*Context. *
Knowledge of the intrinsic shapes of galaxy components provides
crucial information when constraining phenomena driving their
formation and evolution.

*Aims. *
We analize the structural parameters of a magnitude-limited sample of
148 unbarred S0–Sb galaxies to derive the intrinsic shape of their
bulges.

*Methods. *
We developed a new method to derive the intrinsic shapes of bulges
based on geometrical relationships between the apparent and intrinsic
shapes of bulges and disks. Bulges were assumed to be triaxial
ellipsoids sharing the same center and polar axis of their surrounding
disks. Disks were assumed to be circular, infinitesimally thin, and
to lie on the equatorial plane of bulges.
The equatorial ellipticity and intrinsic flattening of bulges were
obtained from the length of the apparent major and minor semi-axes of
the bulge, the twist angle between the apparent major axis of the
bulge and the galaxy line of nodes, and the galaxy inclination.

*Results. *
We find that the intrinsic shape is well constrained for a subsample
of 115 bulges with favorable viewing angles.
A large fraction of them are characterized by an elliptical section
(*B*/*A* < 0.9). This fraction is 33%, 55%, and 43% if using
their maximum, mean, or median equatorial ellipticity, respectively.
Most are flattened along their polar axis (*C* < (*A*+*B*)/2). Only 18%
of the observed bulges have a probability > 50% and none has a
probability > 90% of being elongated along the polar axis.
The distribution of triaxiality is strongly bimodal. This bimodality
is driven by bulges with Sérsic index *n* > 2, or equivalently, by
the bulges of galaxies with a bulge-to-total ratio *B*/*T* > 0.3.
Bulges with *n* *≤* 2 and with *B*/*T* *≤* 0.3 follow a similar
distribution, which differs from that of bulges with *n* > 2 and *B*/*T*
> 0.3.
In particular, bulges with *n* *≤* 2 and *B*/*T* *≤* 0.3 exhibit a
larger fraction of oblate axisymmetric (or nearly axisymmetric)
bulges, a smaller fraction of triaxial bulges, and fewer prolate
axisymmetric (or nearly axisymmetric) bulges with respect to bulges
with *n* > 2 and with *B*/*T* > 0.3, respectively.
No correlation is found between the intrinsic shape and either the
luminosity or velocity dispersion of bulges.

*Conclusions. *
According to predictions of the numerical simulations of bulge
formation, bulges with *n* *≤* 2, which show a high fraction of
oblate axisymmetric (or nearly axisymmetric) shapes and have *B*/*T* *≤*
0.3, may be the result of dissipational minor mergers. Both major
dissipational and dissipationless mergers seem to be required to
explain the variety of shapes found for bulges with *n* > 2 and *B*/*T* >
0.3.

Key words: galaxies: bulges / galaxies: elliptical and lenticular, cD / galaxies: photometry / galaxies: spiral / galaxies: statistics / galaxies: structure

*© ESO, 2010*