EDP Sciences
Free access

This article has an erratum: [erratum]

Issue A&A
Volume 506, Number 2, November I 2009
Page(s) 661 - 675
Section Extragalactic astronomy
DOI http://dx.doi.org/10.1051/0004-6361/200811572
Published online 27 August 2009

A&A 506, 661-675 (2009)
DOI: 10.1051/0004-6361/200811572

Physical conditions in high-redshift GRB-DLA absorbers observed with VLT/UVES: implications for molecular hydrogen searches

C. Ledoux1, P. M. Vreeswijk2, A. Smette1, A. J. Fox1, P. Petitjean3, S. L. Ellison4, J. P. U. Fynbo2, and S. Savaglio5

1  European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago 19, Chile
    e-mail: cledoux@eso.org
2  Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
3  Institut d'Astrophysique de Paris, CNRS and UPMC Paris 6, UMR 7095, 98bis boulevard Arago, 75014 Paris, France
4  Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada
5  Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, PF 1312, 85748 Garching bei München, Germany

Received 22 December 2008 / Accepted 15 June 2009

Abstract
Aims. We aim to understand the nature of the absorbing neutral gas in the galaxies hosting high-redshift long-duration gamma-ray bursts (GRBs) and to determine their physical conditions.
Methods. A detailed analysis of high-quality VLT/UVES spectra of the optical afterglow of GRB 050730 and other Swift-era bursts is presented.
Results. We report the detection of a significant number of previously unidentified allowed transition lines of Fe+, involving the fine structure of the ground term ( 6D7/2, 6D5/2, 6D3/2, 6D1/2) and that of other excited levels (4F9/2, 4F7/2, 4F5/2, 4F3/2, 4D7/2, 4D5/2), from the zabs = 3.969, log N(H0) = 22.10, damped Lyman-$\alpha$ (DLA) system located in the host galaxy of GRB 050730. No molecular hydrogen (H2) is detected down to a molecular fraction of log f < -8.0. We derive accurate metal abundances for Fe+, S+, N0, Ni+, and, for the first time in this system, Si+ and Ar0. The absorption lines are best-fit as a single narrow velocity component at zabs = 3.96857. The time-dependent evolution of the observed Fe+ energy-level populations is modelled by assuming the excitation mechanism is fluorescence following excitation by ultraviolet photons emitted by the afterglow of GRB 050730. This UV pumping model successfully reproduces the observations, yielding a total Fe+ column density of log N = 15.49$\pm$0.03, a burst/cloud distance (defined to the near-side of the cloud) of d = 440$\pm$30 pc, and a linear cloud size of l = $520^{\rm +240}_{-190}$ pc. This application of our photo-excitation code demonstrates that burst/DLA distances can be determined without strong constraints on absorption-line variability provided enough energy levels are detected. From the cloud size, we infer a particle density of nH $\approx$ 5-15 cm-3.
Conclusions. We discuss these results in the context of no detections of H2 and C I lines (with log N(C0)/N(S+) < -3) in a sample of seven z > 1.8 GRB host galaxies observed with VLT/UVES. We show that the lack of H2 can be explained by the low metallicities, [X/H] < -1, low depletion factors, and, at most, moderate particle densities of the systems. This points to a picture where GRB-DLAs typically exhibiting very high H0 column densities are diffuse metal-poor atomic clouds with high kinetic temperatures, Tkin $\ga$ 1000 K, and large physical extents, l $\ga$ 100 pc. The properties of GRB-DLAs observed at high spectral resolution towards bright GRB afterglows differ markedly from the high metal and dust contents of GRB-DLAs observed at lower resolution. This difference likely results from the effect of a bias, against systems of high metallicity and/or close to the GRB, due to dust obscuration in the magnitude-limited GRB afterglow samples observed with high-resolution spectrographs.


Key words: gamma rays: bursts -- Galaxy: abundances -- galaxies: ISM -- galaxies: quasars: absorption lines -- cosmology: observations



© ESO 2009

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access. An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.
  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account. In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.

Editor-in-Chief: T. Forveille
Letters Editor-in-Chief: J. Alves
Managing Editor: C. Bertout

ISSN: 0004-6361 ; e-ISSN: 1432-0746
Frequency: 12 volumes per year
Published by: EDP Sciences

Mirror sites: CDS | EDP Sciences
  RSS feeds
© The European Southern Observatory (ESO)