EDP Sciences
Free access
Issue
A&A
Volume 466, Number 1, April IV 2007
Page(s) 201 - 213
Section Interstellar and circumstellar matter
DOI http://dx.doi.org/10.1051/0004-6361:20053425


A&A 466, 201-213 (2007)
DOI: 10.1051/0004-6361:20053425

High latitude gas in the $\beta\:$Pictoris system

A possible origin related to falling evaporating bodies
H. Beust and P. Valiron

Laboratoire d'Astrophysique de Grenoble, UMR 5571 CNRS, Université J. Fourier, BP 53, 38041 Grenoble Cedex 9, France
    e-mail: Herve.Beust@obs.ujf-grenoble.fr

(Received 13 May 2005 / Accepted 15 December 2006)

Abstract
Context.The puzzling detection of $\ion{Ca}{ii}$ ions at fairly high latitude ($\ga$$ 30\degr$) above the outer parts of the $\beta\:$Pictoris circumstellar disk was recently reported. Surprisingly, this detection does not extend to $\ion{Na}{i}$ atoms, in contradiction with our modelling of the emission lines in and out of the mid-plane of the disk.
Aims.We propose that the presence of these off-plane $\ion{Ca}{ii}$ ions (and to a lesser extent $\ion{Fe}{i}$ atoms), and the non-detection of off-plane $\ion{Na}{i}$ atoms, could be the consequence of the evaporation process of Falling Evaporating Bodies (FEBs), i.e., star-grazing planetesimals that evaporate in the immediate vicinity of the star.
Methods.Our model is two-fold. Firstly, we show numerically and theoretically that in the star-grazing regime, the FEBs are subject to inclination oscillations up to 30-$40\degr$, and that most metallic species released during each FEB sublimation keep track of their initial orbital inclination while starting a free expansion away from the star, blown out by a strong radiation pressure. Secondly, the off-plane $\ion{Ca}{ii}$ and $\ion{Fe}{i}$ species must be stopped prior to their detection at rest with respect to the star, about 100 AU away. We revisit the role of energetic collisional processes, and we investigate the possible influence of magnetic interactions.
Results.This dynamical process of inclination oscillations explains the presence of off-plane $\ion{Ca}{ii}$ (and $\ion{Fe}{i}$). It also accounts for the absence of $\ion{Na}{i}$ because once released by the FEBs, these atoms are quickly photoionized and no longer undergo any significant radiation pressure. Our numerical simulations demonstrate that the deceleration of metallic ions can be achieved very efficiently if the ions encounter a dilute neutral gaseous medium. The required $\ion{H}{i}$ column density is reduced to ~ $ 10^{17}\,\mbox{cm}^{-2}$, one order of magnitude below present detection limits. We also investigate the possibility that the ions are slowed down magnetically. While the sole action of a magnetic field of the order of $1\,\mu$G is not effective, the combined effect of magnetic and collisional deceleration processes lead to an additional lowering of the required $\ion{H}{i}$ column density by one order of magnitude.


Key words: stars: circumstellar matter -- stars: individual: $\beta\:$Pic -- celestial mechanics -- methods: numerical -- molecular processes -- magnetic fields



© ESO 2007

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.