EDP Sciences
Free Access
Issue
A&A
Volume 421, Number 1, July I 2004
Page(s) 281 - 294
Section Stellar atmospheres
DOI https://doi.org/10.1051/0004-6361:20040127
Published online 11 June 2004


A&A 421, 281-294 (2004)
DOI: 10.1051/0004-6361:20040127

Estimating stellar parameters from spectra

I. Goodness-of-fit parameters and lack-of-fit test
L. Decin1, Z. Shkedy2, G. Molenberghs2, M. Aerts2 and C. Aerts1

1  Department of Physics and Astronomy, Institute for Astronomy, K.U. Leuven, K.U. Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
2  Biostatistics, Center for Statistics, Limburgs Universitair Centrum, Universitaire Campus, Building D, 3590 Diepenbeek, Belgium

(Received 22 April 2003/ Accepted 18 January 2004 )

Abstract
Estimating stellar parameters from spectrophotometric data is a key tool in the study of stellar structure and stellar evolution. Although many methods have been proposed to estimate stellar parameters from ultraviolet (UV), optical and infrared (IR) data using low, medium or high-resolution observational data of the target(s), only a few address the problem of the uncertainties in the stellar parameters. This information is critical for a meaningful comparison of the derived parameters with results obtained from other data and/or methods. Here we present a frequentist method to estimate these uncertainties. We demonstrate that the combined use of both a local and a global goodness-of-fit parameter alters the uncertainty intervals as determined from the use of only one of these deviation estimating parameters. This technique using both goodness-of-fit parameters is applied to the infrared 2.38-4.08  $\mu$m ISO-SWS data (Infrared Space Observatory - Short Wavelength Spectrometer) of  $\alpha$ Boo, yielding an effective temperature range from 4160 K to 4300 K, a logarithm of the gravity range from 1.35 to 1.65 dex and a metallicity from  -0.30 to 0.00 dex. However, using a lack-of-fit test, it is shown that even the "best" theoretical models are still not capable of capturing all the structure in the data, and this is due to our incomplete knowledge and modelling of the full physical stellar structure or due to problems in the data reduction process.


Key words: methods: data analysis -- methods: statistical -- techniques: spectroscopic -- stars: fundamental parameters -- stars: individual: Alpha Boo

Offprint request: L. Decin, Leen.Decin@ster.kuleuven.ac.be

SIMBAD Objects



© ESO 2004

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.