EDP Sciences
Free Access
Issue
A&A
Volume 406, Number 3, August II 2003
Page(s) 937 - 955
Section Formation, structure and evolution of stars
DOI https://doi.org/10.1051/0004-6361:20030765


A&A 406, 937-955 (2003)
DOI: 10.1051/0004-6361:20030765

Modeling gas-phase H $\mathsf{_2}$O between 5  $\mathsf{\mu}$m and 540  $\mathsf{\mu}$m toward massive protostars

A. M. S. Boonman1, S. D. Doty2, E. F. van Dishoeck1, E. A. Bergin3, G. J. Melnick3, C. M. Wright1 and R. Stark4

1  Sterrewacht Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands
2  Department of Physics and Astronomy, Denison University, Granville, Ohio 43023, USA
3  Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4  Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

(Received 10 March 2003 / Accepted 16 May 2003 )

Abstract
We present models and observations of gas-phase H 2O lines between 5 and 540  $\mu$m toward deeply embedded massive protostars, involving both pure rotational and ro-vibrational transitions. The data have been obtained for 6 sources with both the Short and Long Wavelength Spectrometers (SWS and LWS) on board the Infrared Space Observatory (ISO) and with the Submillimeter Wave Astronomy Satellite (SWAS). For comparison, CO J=7-6 spectra have been observed with the MPIfR/SRON 800 GHz heterodyne spectrometer at the James Clerk Maxwell Telescope (JCMT). A radiative transfer model in combination with different physical/chemical scenarios has been used to model these H 2O lines for 4 sources to probe the chemical structure of these massive protostars. The results indicate that pure gas-phase production of H 2O cannot explain the observed spectra. Ice evaporation in the warm inner envelope and freeze-out in the cold outer part are important for most of our sources and occur at $T\sim90$-110 K. The ISO-SWS data are particularly sensitive to ice evaporation in the inner part whereas the ISO-LWS data are good diagnostics of freeze-out in the outer region. The modeling suggests that the 557 GHz SWAS line includes contributions from both the cold and the warm H 2O gas. The SWAS line profiles indicate that for some of the sources a fraction of up to 50% of the total flux may originate in the outflow. Shocks do not seem to contribute significantly to the observed emission in other H 2O lines, however, in contrast with the case for Orion. The results show that three of the observed and modeled H 2O lines, the 303-212, 212-101, and 110-101 lines, are good candidates to observe with the Herschel Space Observatory in order to further investigate the physical and chemical conditions in massive star-forming regions.


Key words: ISM: abundances -- ISM: molecules -- infrared: ISM -- ISM: lines and bands -- molecular processes

Offprint request: A. M. S. Boonman, boonman@strw.leidenuniv.nl

SIMBAD Objects



© ESO 2003

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.