EDP Sciences
Free access
Issue
A&A
Volume 389, Number 3, July III 2002
Page(s) 908 - 930
Section Formation, structure and evolution of stars
DOI http://dx.doi.org/10.1051/0004-6361:20020681


A&A 389, 908-930 (2002)
DOI: 10.1051/0004-6361:20020681

Physical structure and CO abundance of low-mass protostellar envelopes

J. K. Jørgensen, F. L. Schöier and E. F. van Dishoeck

Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands

(Received 14 December 2001 / Accepted 30 April 2002 )

Abstract
We present 1D radiative transfer modelling of the envelopes of a sample of 18 low-mass protostars and pre-stellar cores with the aim of setting up realistic physical models, for use in a chemical description of the sources. The density and temperature profiles of the envelopes are constrained from their radial profiles obtained from SCUBA maps at 450 and 850  $\mu$m and from measurements of the source fluxes ranging from 60 $\mu$m to 1.3 mm. The densities of the envelopes within ~10 000 AU can be described by single power-laws $\rho\propto r^{-\alpha}$ for the class 0 and I sources with $\alpha$ ranging from 1.3 to 1.9, with typical uncertainties of $\pm$0.2. Four sources have flatter profiles, either due to asymmetries or to the presence of an outer constant density region. No significant difference is found between class 0 and I sources. The power-law fits fail for the pre-stellar cores, supporting recent results that such cores do not have a central source of heating. The derived physical models are used as input for Monte Carlo modelling of submillimeter C 18O and C 17O emission. It is found that class I objects typically show CO abundances close to those found in local molecular clouds, but that class 0 sources and pre-stellar cores show lower abundances by almost an order of magnitude implying that significant depletion occurs for the early phases of star formation. While the 2-1 and 3-2 isotopic lines can be fitted using a constant fractional CO abundance throughout the envelope, the 1-0 lines are significantly underestimated, possibly due to contribution of ambient molecular cloud material to the observed emission. The difference between the class 0 and I objects may be related to the properties of the CO ices.


Key words: stars: formation -- ISM: molecules -- ISM: abundances -- stars: circumstellar matter -- radiative transfer  -- astrochemistry

Offprint request: J. K. Jørgensen, joergensen@strw.leidenuniv.nl

SIMBAD Objects



© ESO 2002

What is OpenURL?

The OpenURL standard is a protocol for transmission of metadata describing the resource that you wish to access.

An OpenURL link contains article metadata and directs it to the OpenURL server of your choice. The OpenURL server can provide access to the resource and also offer complementary services (specific search engine, export of references...). The OpenURL link can be generated by different means.

  • If your librarian has set up your subscription with an OpenURL resolver, OpenURL links appear automatically on the abstract pages.
  • You can define your own OpenURL resolver with your EDPS Account.
    In this case your choice will be given priority over that of your library.
  • You can use an add-on for your browser (Firefox or I.E.) to display OpenURL links on a page (see http://www.openly.com/openurlref/). You should disable this module if you wish to use the OpenURL server that you or your library have defined.