EDP Sciences
Free Access
Volume 366, Number 2, February I 2001
Page(s) 636 - 650
Section Diffuse matter in space
DOI https://doi.org/10.1051/0004-6361:20000292
Published online 15 February 2001

A&A 366, 636-650 (2001)
DOI: 10.1051/0004-6361:20000292

Quantification of molecular cloud structure using the $\Delta$-variance

F. Bensch, J. Stutzki and V. Ossenkopf

I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

(Received 4 September 2000 / Accepted 7 November 2000)

We present a detailed study of the $\Delta$-variance as a method to quantify molecular cloud structure. The $\Delta$-variance was introduced by Stutzki et al. (1998) to analyze the drift behaviour of scalar functions and is used to characterize the spatial structure of observed molecular cloud images. For fractional Brownian motion structures ( fBm-fractals ), characterized by a power law power spectrum and random phases, the $\Delta$-variance allows to determine the power spectral index $\beta$. We present algorithms to determine the $\Delta$-variance for discretely sampled maps and study the influence of white noise, beam smoothing and the finite spatial extent of the maps. We find that for images with $\beta> 3$, edge effects can bias the structure parameters when determined by means of a Fourier transform analysis. In contrast, the $\Delta$-variance provides a reliable estimate for the spectral index $\beta$, if determined in the spatial domain. The effects of noise and beam smoothing are analytically represented in a leading order approximation. This allows to use the $\Delta$-variance of observed maps even at scales where the influence of both effects becomes significant, allowing to derive the spectral index $\beta$ over a wider range and thus more reliably than possible otherwise. The $\Delta$-variance is applied to velocity integrated spectral line maps of several clouds observed in rotational transitions of 12CO and 13CO. We find that the spatial structure of the emission is well characterized by a power law power spectrum in all cases. For linear scales larger than $\sim$0.5 pc the spectral index is remarkably uniform for the different clouds and transitions observed ( $2.5\le\beta\le2.8$). Significantly larger values ($\beta\ga3$) are found for observations made with higher linear resolution toward the molecular cloud MCLD 123.5+24.9 in the Polaris Flare, indicating a smoother spatial structure of the emission at small scales (<0.5 pc).

Key words: interstellar medium (ISM): clouds -- ISM: structure -- ISM: individual objects: polaris flare -- turbulence -- methods: data analysis

Offprint request: F. Bensch, bensch@ph1.uni-koeln.de

SIMBAD Objects

© ESO 2001

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.